Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clear corneal incision, an important step in modern cataract surgery: a review

Abstract

A clear corneal incision (CCI) is the most commonly used entrance site in modern phacoemulsification cataract surgery. Despite some initial concerns about increased endophthalmitis rates through a self-sealing CCI, recent literature suggests that the risk of infection with proper wound construction and all other necessary precautions is minimal. The technique of creating a clear corneal incision has, with recent developments in corneal imaging, undergone critical appraisal leading to a better understanding of incision architecture. Many surgeons operate through smaller incisions, and they have a wide choice of surgical instruments to create their corneal incisions. The aim of this review is to discuss the history and the current status of clear corneal incision creation, the design and materials of surgical blades, and the current trends in manufacturing and sustainability. Although disposable instruments have some advantages and are very popular, recycling, if possible, and avoiding unnecessary plastic waste are important considerations. In any case, the step of CCI is a small one for the surgeon, but a big one for the eye. That is why it has to be done with the utmost precision and in-depth knowledge is important.

摘要

透明角膜切口 (CCI) 是现代超声乳化白内障术中最常用的手术切口。最初人们担心自限愈合的CCI可能会增加眼内炎的并发率, 但近期的文献表明, 只要通过适当的切口结构和其他必要的预防措施, 感染的风险可降至最低。随着角膜成像技术的最新发展, 构建透明的角膜切口技术已经经过了关键性评估, 使人们对切口结构有了更好的认知。许多外科医生都通过较小的切口进行手术, 且利用多种手术器械来创建角膜切口。本综述的目的是讨论透明角膜切口创建的历史和现状, 手术刀片的设计和材料, 以及制造和可持续性的当前趋势。一次性手术器械包含很多优点且广受欢迎, 但回收和避免不必要的塑料垃圾仍是重要的考虑因素。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence of surgical steps.
Fig. 2
Fig. 3: Schematic illustration.
Fig. 4: Profiles of CCI.
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this review are available within the article.

References

  1. Davis G. The evolution of cataract surgery. Mo Med. 2016;113:58–62.

    PubMed  PubMed Central  Google Scholar 

  2. Fine IH. Architecture and construction of a self-sealing incision for cataract surgery. J Cataract Refract Surg. 1991;17 Suppl:672-6. https://doi.org/10.1016/s0886-3350(13)80682-7.

  3. Fine H, Packer M, Hoffman R. Chapter 2: Surgical techniques for small incision cataract surgery. In: Kohnen T, Koch DD, Essentials in Ophthalmology, Cataract and Refractive Surgery. Springer, 2005:19–34.

  4. Leaming DV. Practice styles and preferences of ASCRS members-1992 survey. American Society of Cataract and Refractive Surgeons. J Cataract Refract Surg. 1993;19:600–6. https://doi.org/10.1016/s0886-3350(13)80007-7.

    Article  CAS  PubMed  Google Scholar 

  5. Leaming DV. Practice styles and preferences of ASCRS members-1995 survey. J Cataract Refract Surg. 1996;22:931–9. https://doi.org/10.1016/s0886-3350(96)80194-5.

    Article  CAS  PubMed  Google Scholar 

  6. Leaming DV. Practice styles and preferences of ASCRS members-2000 survey. American Society of Cataract and Refractive Surgery. J Cataract Refract Surg. 2001;27:948–55. https://doi.org/10.1016/s0886-3350(01)00905-1.

    Article  CAS  PubMed  Google Scholar 

  7. Leaming DV. Practice styles and preferences of ASCRS members-2003 survey. J Cataract Refract Surg. 2004;30:892–900. https://doi.org/10.1016/j.jcrs.2004.02.064.

    Article  PubMed  Google Scholar 

  8. Freeman W. Ophthalmic comprehensive reports 2021 single-use ophthalmic surgical products market report: global analysis for 2020 to 2026, Market Scope, September, 2021. https://www.market-scope.com/pages/reports/354/2022-ophthalmic-surgical-instruments-market-report-global-analysis-for-2021-to-2027-november-2022.

  9. Fine IH. Clear corneal incisions. Int Ophthalmol Clin. 1994;34:59–72. https://doi.org/10.1097/00004397-199403420-00005.

  10. Elkady B, Pinero D, Alio JL. Corneal incision quality: microincision cataract surgery versus microcoaxial phacoemulsification. J Cataract Refract Surg. 2009;35:466–74. https://doi.org/10.1016/j.jcrs.2008.11.047.

    Article  PubMed  Google Scholar 

  11. Dewey S, Beiko G, Braga-Mele R, Nixon DR, Raviv T, Rosenthal K, et al. Microincisions in cataract surgery. J Cataract Refract Surg. 2014;40:1549–57. https://doi.org/10.1016/j.jcrs.2014.07.006.

    Article  PubMed  Google Scholar 

  12. Lyles GW, Cohen KL, Lam D. OCT-documented incision features and natural history of clear corneal incisions used for bimanual microincision cataract surgery. Cornea. 2011;30:681–6. https://doi.org/10.1097/ICO.0b013e31820128bb.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teixeira A, Salaroli C, Filho FR, Pinto FT, Souza N, Sousa BA, et al. Architectural analysis of clear corneal incision techniques in cataract surgery using Fourier-domain OCT. Ophthalmic Surg Lasers Imaging. 2012;43:S103–8. https://doi.org/10.3928/15428877-20121003-02.

    Article  PubMed  Google Scholar 

  14. Torres LF, Saez-Espinola F, Colina JM, Retchkiman M, Patel MR, Agurto R, et al. In vivo architectural analysis of 3.2 mm clear corneal incisions for phacoemulsification using optical coherence tomography. J Cataract Refract Surg. 2006;32:1820–6. https://doi.org/10.1016/j.jcrs.2006.06.020.

    Article  PubMed  Google Scholar 

  15. Calladine D. Optical coherence tomography studies of clear corneal incision wound architecture. J Cataract Refract Surg 2011;37:1375. https://doi.org/10.1016/j.jcrs.2011.05.002.

    Article  PubMed  Google Scholar 

  16. Calladine D, Packard R. Clear corneal incision architecture in the immediate postoperative period evaluated using optical coherence tomography. J Cataract Refract Surg. 2007;33:1429–35. https://doi.org/10.1016/j.jcrs.2007.04.011.

    Article  PubMed  Google Scholar 

  17. Li SS, Misra SL, Wallace HB, McKelvie J. Effect of phacoemulsification incision size on incision repair and remodeling: optical coherence tomography assessment. J Cataract Refract Surg. 2018;44:1336–43. https://doi.org/10.1016/j.jcrs.2018.07.025.

    Article  PubMed  Google Scholar 

  18. Dupont-Monod S, Labbe A, Fayol N, Chassignol A, Bourges JL, Baudouin C. In vivo architectural analysis of clear corneal incisions using anterior segment optical coherence tomography. J Cataract Refract Surg. 2009;35:444–50. https://doi.org/10.1016/j.jcrs.2008.11.034.

    Article  PubMed  Google Scholar 

  19. Fine IH, Hoffman RS, Packer M. Profile of clear corneal cataract incisions demonstrated by ocular coherence tomography. J Cataract Refract Surg. 2007;33:94–7. https://doi.org/10.1016/j.jcrs.2006.09.016.

    Article  PubMed  Google Scholar 

  20. Schallhorn JM, Tang M, Li Y, Song JC, Huang D. Optical coherence tomography of clear corneal incisions for cataract surgery. J Cataract Refract Surg. 2008;34:1561–5. https://doi.org/10.1016/j.jcrs.2008.05.026.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tan QQ, Tian J, Liao X, Lin J, Wen BW, Lan CJ. Impact of different clear corneal incision sizes on anterior corneal aberration for cataract surgery. Arq Bras Oftalmol Nov-. 2020;83:478–84. https://doi.org/10.5935/0004-2749.20200089.

    Article  Google Scholar 

  22. He Q, Huang J, He X, Yu W, Yap M, Han W. Effect of corneal incision features on anterior and posterior corneal astigmatism and higher-order aberrations after cataract surgery. Acta Ophthalmol. 2021;99:e1027–40. https://doi.org/10.1111/aos.14778.

    Article  PubMed  Google Scholar 

  23. Li X, Chen X, He S, Xu W. Effect of 1.8-mm steep-axis clear corneal incision on the posterior corneal astigmatism in candidates for toric IOL implantation. BMC Ophthalmol. 2020;20:187. https://doi.org/10.1186/s12886-020-01456-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayashi K, Yoshida M, Hirata A, Yoshimura K. Changes in shape and astigmatism of total, anterior, and posterior cornea after long versus short clear corneal incision cataract surgery. J Cataract Refract Surg. 2018;44:39–49. https://doi.org/10.1016/j.jcrs.2017.10.037.

    Article  PubMed  Google Scholar 

  25. Al Mahmood AM, Al-Swailem SA, Behrens A. Clear corneal incision in cataract surgery. Middle East Afr J Ophthalmol. 2014;21:25–31. https://doi.org/10.4103/0974-9233.124084.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mastropasqua L, Toto L, Mastropasqua A, et al. Femtosecond laser versus manual clear corneal incision in cataract surgery. J Refract Surg. 2014;30:27–33. https://doi.org/10.3928/1081597x-20131217-03.

    Article  PubMed  Google Scholar 

  27. Grewal DS, Basti S. Comparison of morphologic features of clear corneal incisions created with a femtosecond laser or a keratome. J Cataract Refract Surg. 2014;40:521–30. https://doi.org/10.1016/j.jcrs.2013.11.028.

    Article  PubMed  Google Scholar 

  28. Ferreira TB, Ribeiro FJ, Pinheiro J, Ribeiro P, O’Neill JG. Comparison of surgically induced astigmatism and morphologic features resulting from femtosecond laser and manual clear corneal incisions for cataract surgery. J Refract Surg. 2018;34:322–9. https://doi.org/10.3928/1081597X-20180301-01.

    Article  PubMed  Google Scholar 

  29. Dick HB, Schwenn O, Krummenauer F, Krist R, Pfeiffer N. Inflammation after sclerocorneal versus clear corneal tunnel phacoemulsification. Ophthalmology. 2000;107:241–7. https://doi.org/10.1016/s0161-6420(99)00082-2.

    Article  CAS  PubMed  Google Scholar 

  30. Crandall AS. Anesthesia modalities for cataract surgery. Curr Opin Ophthalmol. 2001;12:9–11. https://doi.org/10.1097/00055735-200102000-00003.

    Article  CAS  PubMed  Google Scholar 

  31. Nikose AS, Saha D, Laddha PM, Patil M. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison. Clin Ophthalmol. 2018;12:65–70. https://doi.org/10.2147/OPTH.S149709.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tejedor J, Murube J. Choosing the location of corneal incision based on preexisting astigmatism in phacoemulsification. Am J Ophthalmol. 2005;139:767–76. https://doi.org/10.1016/j.ajo.2004.12.057.

    Article  PubMed  Google Scholar 

  33. Taban M, Behrens A, Newcomb RL, Nobe MY, Saedi G, Sweet PM, et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol. 2005;123:613–20. https://doi.org/10.1001/archopht.123.5.613.

    Article  PubMed  Google Scholar 

  34. Cao H, Zhang L, Li L, Lo S. Risk factors for acute endophthalmitis following cataract surgery: a systematic review and meta-analysis. PLoS One. 2013;8:e71731. https://doi.org/10.1371/journal.pone.0071731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. West ES, Behrens A, McDonnell PJ, Tielsch JM, Schein OD. The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population increased between 1994 and 2001. Ophthalmology. 2005;112:1388–94. https://doi.org/10.1016/j.ophtha.2005.02.028.

    Article  PubMed  Google Scholar 

  36. Colleaux KM, Hamilton WK. Effect of prophylactic antibiotics and incision type on the incidence of endophthalmitis after cataract surgery. Can J Ophthalmol J Can d’ophtalmologie. 2000;35:373–8. https://doi.org/10.1016/s0008-4182(00)80124-6.

    Article  CAS  Google Scholar 

  37. Lundstrom M, Wejde G, Stenevi U, Thorburn W, Montan P. Endophthalmitis after cataract surgery: a nationwide prospective study evaluating incidence in relation to incision type and location. Ophthalmology. 2007;114:866–70. https://doi.org/10.1016/j.ophtha.2006.11.025.

    Article  PubMed  Google Scholar 

  38. Oshika T, Hatano H, Kuwayama Y, Ogura Y, Ohashi Y, Oki K, et al. Incidence of endophthalmitis after cataract surgery in Japan. Acta Ophthalmol Scand. 2007;85:848–51. https://doi.org/10.1111/j.1600-0420.2007.00932.x.

    Article  PubMed  Google Scholar 

  39. Miller JJ, Scott IU, Flynn HW Jr., Smiddy WE, Newton J, Miller D. Acute-onset endophthalmitis after cataract surgery (2000-2004): incidence, clinical settings, and visual acuity outcomes after treatment. Am J Ophthalmol. 2005;139:983–7. https://doi.org/10.1016/j.ajo.2005.01.025.

    Article  PubMed  Google Scholar 

  40. Krummenauer F, Kurz S, Dick HB. Epidemiological and health economical evaluation of intraoperative antibiosis as a protective agent against endophthalmitis after cataract surgery. Eur J Med Res. 2005;10:71–5.

    CAS  PubMed  Google Scholar 

  41. Ng JQ, Morlet N, Bulsara MK, Semmens JB. Reducing the risk for endophthalmitis after cataract surgery: population-based nested case-control study: endophthalmitis population study of Western Australia sixth report. J Cataract Refract Surg. 2007;33:269–80. https://doi.org/10.1016/j.jcrs.2006.10.067.

    Article  PubMed  Google Scholar 

  42. Khanna RC, Ray VP, Latha M, Cassard SD, Mathai A, Sekhar GC. Risk factors for endophthalmitis following cataract surgery-our experience at a tertiary eye care centre in India. Int J Ophthalmol. 2015;8:1184–9. https://doi.org/10.3980/j.issn.2222-3959.2015.06.19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Monica ML, Long DA. Nine-year safety with self-sealing corneal tunnel incision in clear cornea cataract surgery. Ophthalmology. 2005;112:985–6. https://doi.org/10.1016/j.ophtha.2004.12.030.

    Article  PubMed  Google Scholar 

  44. Nichamin LD, Chang DF, Johnson SH, Mamalis N, Masket S, Packard RB, et al. ASCRS white paper: what is the association between clear corneal cataract incisions and postoperative endophthalmitis? J Cataract Refract Surg. 2006;32:1556–9. https://doi.org/10.1016/j.jcrs.2006.07.009.

    Article  PubMed  Google Scholar 

  45. Pershing S, Lum F, Hsu S, Kelly S, Chiang MF, Rich WL 3rd, et al. Endophthalmitis after cataract surgery in the united states: a report from the intelligent research in sight registry, 2013–2017. Ophthalmology. 2020;127:151–8. https://doi.org/10.1016/j.ophtha.2019.08.026.

    Article  PubMed  Google Scholar 

  46. Friling E, Johansson B, Lundstrom M, Montan P. Postoperative endophthalmitis in immediate sequential bilateral cataract surgery: a nationwide registry study. Ophthalmology. 2022;129:26–34. https://doi.org/10.1016/j.ophtha.2021.07.007.

    Article  PubMed  Google Scholar 

  47. Zafar S, Dun C, Srikumaran D, et al. Endophthalmitis rates among medicare beneficiaries undergoing cataract surgery between 2011 and 2019. Ophthalmology. 2022;129:250–7. https://doi.org/10.1016/j.ophtha.2021.09.004.

    Article  PubMed  Google Scholar 

  48. Shi SL, Yu XN, Cui YL, Zheng SF, Shentu XC. Incidence of endophthalmitis after phacoemulsification cataract surgery: a meta-analysis. Int J Ophthalmol. 2022;15:327–35. https://doi.org/10.18240/ijo.2022.02.20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim ME, Kim DB. Cataract incision-related corneal erosion: recurrent corneal erosion because of clear corneal cataract surgery. J Cataract Refract Surg. 2020;46:1436–40. https://doi.org/10.1097/j.jcrs.0000000000000345.

    Article  PubMed  Google Scholar 

  50. Olsen T, Dam-Johansen M, Bek T, Hjortdal JO. Corneal versus scleral tunnel incision in cataract surgery: a randomized study. J Cataract Refract Surg. 1997;23:337–41. https://doi.org/10.1016/s0886-3350(97)80176-9.

    Article  CAS  PubMed  Google Scholar 

  51. Marcon AS, Rapuano CJ, Jones MR, Laibson PR, Cohen EJ. Descemet’s membrane detachment after cataract surgery: management and outcome. Ophthalmology. 2002;109:2325–30. https://doi.org/10.1016/s0161-6420(02)01288-5.

    Article  PubMed  Google Scholar 

  52. Singhal D, Sahay P, Goel S, Asif MI, Maharana PK, Sharma N. Descemet membrane detachment. Surv Ophthalmol. 2020;65:279–93. https://doi.org/10.1016/j.survophthal.2019.12.006.

    Article  PubMed  Google Scholar 

  53. May W, Castro-Combs J, Camacho W, Wittmann P, Behrens A. Analysis of clear corneal incision integrity in an ex vivo model. J Cataract Refract Surg. 2008;34:1013–8. https://doi.org/10.1016/j.jcrs.2008.01.038.

    Article  PubMed  Google Scholar 

  54. Masket S, Belani S. Proper wound construction to prevent short-term ocular hypotony after clear corneal incision cataract surgery. J Cataract Refract Surg. 2007;33:383–6. https://doi.org/10.1016/j.jcrs.2006.11.006.

    Article  PubMed  Google Scholar 

  55. Kim KH, Kim WS. Aniridia after blunt trauma and presumed wound dehiscence in a pseudophakic eye. Arq Bras Oftalmol. 2016;79:44–5. https://doi.org/10.5935/0004-2749.20160013.

    Article  PubMed  Google Scholar 

  56. Beltrame G, Salvetat ML, Driussi G, Chizzolini M. Effect of incision size and site on corneal endothelial changes in cataract surgery. J Cataract Refract Surg. 2002;28:118–25. https://doi.org/10.1016/s0886-3350(01)00983-x.

    Article  PubMed  Google Scholar 

  57. Kohnen T, Lambert RJ, Koch DD. Incision sizes for foldable intraocular lenses. Ophthalmology. 1997;104:1277–86. https://doi.org/10.1016/s0161-6420(97)30147-x.

    Article  CAS  PubMed  Google Scholar 

  58. Ernest P, Tipperman R, Eagle R, Kardasis C, Lavery K, Sensoli A, et al. Is there a difference in incision healing based on location? J Cataract Refract Surg. 1998;24:482–6. https://doi.org/10.1016/s0886-3350(98)80288-5.

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Wolfe P, Hernandez V, Kohnen T. Comparative assessment of the corneal incision enlargement of 4 preloaded IOL delivery systems. J Cataract Refract Surg. 2020;46:1041–6. https://doi.org/10.1097/j.jcrs.0000000000000214.

    Article  PubMed  Google Scholar 

  60. Cennamo M, Favuzza E, Salvatici MC, Giuranno G, Buzzi M, Mencucci R. Effect of manual, preloaded, and automated preloaded injectors on corneal incision architecture after IOL implantation. J Cataract Refract Surg. 2020;46:1374–80. https://doi.org/10.1097/j.jcrs.0000000000000295.

    Article  PubMed  Google Scholar 

  61. Arboleda A, Arrieta E, Aguilar MC, Sotolongo K, Nankivil D, Parel JA. Variations in intraocular lens injector dimensions and corneal incision architecture after cataract surgery. J Cataract Refract Surg. 2019;45:656–61. https://doi.org/10.1016/j.jcrs.2018.10.047.

    Article  PubMed  Google Scholar 

  62. Packard R. OCT analysis of clear corneal incision width over time. Presented at the ASCRS meeting, San Diego, March 25–29, 2011.

  63. Berdahl JP, DeStafeno JJ, Kim T. Corneal wound architecture and integrity after phacoemulsification evaluation of coaxial, microincision coaxial, and microincision bimanual techniques. J Cataract Refract Surg. 2007;33:510–5. https://doi.org/10.1016/j.jcrs.2006.11.012.

    Article  PubMed  Google Scholar 

  64. Vasavada V, Vasavada AR, Vasavada VA, Srivastava S, Gajjar DU, Mehta S. Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems. J Cataract Refract Surg. 2013;39:563–71. https://doi.org/10.1016/j.jcrs.2012.11.018.

    Article  PubMed  Google Scholar 

  65. Kurz S, Krummenauer F, Gabriel P, Pfeiffer N, Dick HB. Biaxial microincision versus coaxial small-incision clear cornea cataract surgery. Ophthalmology. 2006;113:1818–26. https://doi.org/10.1016/j.ophtha.2006.05.013.

    Article  PubMed  Google Scholar 

  66. Cavallini GM, Campi L, Torlai G, Forlini M, Fornasari E. Clear corneal incisions in bimanual microincision cataract surgery: long-term wound-healing architecture. J Cataract Refract Surg. 2012;38:1743–8. https://doi.org/10.1016/j.jcrs.2012.05.044.

    Article  PubMed  Google Scholar 

  67. Wilczynski M, Supady E, Loba P, Synder A, Palenga-Pydyn D, Omulecki W. Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision. J Cataract Refract Surg. 2009;35:1570–4. https://doi.org/10.1016/j.jcrs.2009.05.014.

    Article  PubMed  Google Scholar 

  68. Cavallini GM, Verdina T, De Maria M, Fornasari E, Torlai G, Volante V, et al. Bimanual microincision cataract surgery with implantation of the new Incise((R)) MJ14 intraocular lens through a 1.4 mm incision. Int J Ophthalmol. 2017;10:1710–5. https://doi.org/10.18240/ijo.2017.11.12.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Borkenstein AF, Borkenstein EM. Geometry of acrylic, hydrophobic IOLs and changes in haptic-capsular bag relationship according to compression and different well diameters: a bench study using computed tomography. Ophthalmol Ther. 2022;11:711–27. https://doi.org/10.1007/s40123-022-00469-z.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Masket S, Wang L, Belani S. Induced astigmatism with 2.2- and 3.0-mm coaxial phacoemulsification incisions. J Refract Surg. 2009;25:21–4. https://doi.org/10.3928/1081597X-20090101-04.

    Article  PubMed  Google Scholar 

  71. Yu YB, Zhu YN, Wang W, Zhang YD, Yu YH, Yao K. A comparable study of clinical and optical outcomes after 1.8, 2.0 mm microcoaxial and 3.0 mm coaxial cataract surgery. Int J Ophthalmol. 2016;9:399–405. https://doi.org/10.18240/ijo.2016.03.13.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Febbraro JL, Wang L, Borasio E, Richiardi L, Khan HN, Saad A, et al. Astigmatic equivalence of 2.2-mm and 1.8-mm superior clear corneal cataract incision. Graefes Arch Clin Exp Ophthalmol. 2015;253:261–5. https://doi.org/10.1007/s00417-014-2854-5.

    Article  PubMed  Google Scholar 

  73. Tagawa K, Higashide T, Sugiyama K, Kawasaki K. Surgically induced astigmatism after micro and small clear temporal corneal incision in cataract surgery. Nippon Ganka Gakkai Zasshi. 2007;111:716–21.

    PubMed  Google Scholar 

  74. Yang J, Wang X, Zhang H, Pang Y, Wei RH. Clinical evaluation of surgery-induced astigmatism in cataract surgery using 2.2 mm or 1.8 mm clear corneal micro-incisions. Int J Ophthalmol. 2017;10:68–71. https://doi.org/10.18240/ijo.2017.01.11.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Menda SA, Chen M, Naseri A. Technique for shortening a long clear corneal incision. Arch Ophthalmol. 2012;130:1589–90. https://doi.org/10.1001/archophthalmol.2012.2536.

    Article  PubMed  Google Scholar 

  76. Ernest PH, Lavery KT, Kiessling LA. Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes. J Cataract Refract Surg. 1994;20:626–9. https://doi.org/10.1016/s0886-3350(13)80651-7.

    Article  CAS  PubMed  Google Scholar 

  77. Wilczynski M, Supady E, Wierzchowski T, Zdzieszynski M, Omulecki W. The effect of corneal tunnel length in patients after standard phacoemulsification through a 2.75 mm incision on surgically induced astigmatism, corneal thickness and endothelial cell density. Klin Ocz. 2016;117:236–42.

    Google Scholar 

  78. Sonmez S, Karaca C. The effect of tunnel length and position on postoperative corneal astigmatism: an optical coherence tomographic study. Eur J Ophthalmol. 2020;30:104–11. https://doi.org/10.1177/1120672118805875.

    Article  PubMed  Google Scholar 

  79. Taban M, Rao B, Reznik J, Zhang J, Chen Z, McDonnell PJ. Dynamic morphology of sutureless cataract wounds-effect of incision angle and location. Surv Ophthalmol. 2004;49:S62–72. https://doi.org/10.1016/j.survophthal.2004.01.003.

    Article  PubMed  Google Scholar 

  80. Rao B, Zhang J, Taban M, McDonnell P, Chen Z. Imaging and investigating the effects of incision angle of clear corneal cataract surgery with optical coherence tomography. Opt Express. 2003;11:3254–61. https://doi.org/10.1364/oe.11.003254.

    Article  PubMed  Google Scholar 

  81. May WN, Castro-Combs J, Quinto GG, Kashiwabuchi R, Gower EW, Behrens A. Standardized Seidel test to evaluate different sutureless cataract incision configurations. J Cataract Refract Surg. 2010;36:1011–7. https://doi.org/10.1016/j.jcrs.2009.12.036.

    Article  PubMed  Google Scholar 

  82. Friedman N Cataract Incisions: Wound Construction. Opthalmology Web, July 2009 (available at: https://www.ophthalmologyweb.com/Featured-Articles/19922-Cataract-Incisions-Wound-Construction).

  83. Teuma EV, Bott S, Edelhauser HF. Sealability of ultrashort-pulse laser and manually generated full-thickness clear corneal incisions. J Cataract Refract Surg. 2014;40:460–8. https://doi.org/10.1016/j.jcrs.2013.08.059.

    Article  PubMed  Google Scholar 

  84. Calladine D, Ward M, Packard R. Adherent ocular bandage for clear corneal incisions used in cataract surgery. J Cataract Refract Surg. 2010;36:1839–48. https://doi.org/10.1016/j.jcrs.2010.06.058.

    Article  PubMed  Google Scholar 

  85. Serrao S, Giannini D, Schiano-Lomoriello D, Lombardo G, Lombardo M. New technique for femtosecond laser creation of clear corneal incisions for cataract surgery. J Cataract Refract Surg. 2017;43:80–86. https://doi.org/10.1016/j.jcrs.2016.08.038.

    Article  PubMed  Google Scholar 

  86. Piao J, Joo CK. Site of clear corneal incision in cataract surgery and its effects on surgically induced astigmatism. Sci Rep. 2020;10:3955. https://doi.org/10.1038/s41598-020-60985-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marek R, Klus A, Pawlik R. Comparison of surgically induced astigmatism of temporal versus superior clear corneal incisions. Klin Ocz. 2006;108:392–6.

    Google Scholar 

  88. Hashemi H, Khabazkhoob M, Soroush S, Shariati R, Miraftab M, Yekta A. The location of incision in cataract surgery and its impact on induced astigmatism. Curr Opin Ophthalmol. 2016;27:58–64. https://doi.org/10.1097/ICU.0000000000000223.

    Article  PubMed  Google Scholar 

  89. Rho CR, Joo CK. Effects of steep meridian incision on corneal astigmatism in phacoemulsification cataract surgery. J Cataract Refract Surg. 2012;38:666–71. https://doi.org/10.1016/j.jcrs.2011.11.031.

    Article  PubMed  Google Scholar 

  90. Borasio E, Mehta JS, Maurino V. Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism: temporal versus on-axis clear corneal incisions. J Cataract Refract Surg. 2006;32:565–72. https://doi.org/10.1016/j.jcrs.2005.12.104.

    Article  PubMed  Google Scholar 

  91. Song W, Chen X, Wang W. Effect of steep meridian clear corneal incisions in phacoemulsification. Eur J Ophthalmol. 2015;25:422–5. https://doi.org/10.5301/ejo.5000575.

    Article  PubMed  Google Scholar 

  92. Bazzazi N, Barazandeh B, Kashani M, Rasouli M. Opposite clear corneal incisions versus steep meridian incision phacoemulsification for correction of pre-existing astigmatism. J Ophthalmic Vis Res. 2008;3:87–90.

    PubMed  PubMed Central  Google Scholar 

  93. Lever J, Dahan E. Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery. J Cataract Refract Surg. 2000;26:803–5. https://doi.org/10.1016/s0886-3350(00)00378-3.

    Article  CAS  PubMed  Google Scholar 

  94. Ren Y, Fang X, Fang A, Wang L, Jhanji V, Gong X. Phacoemulsification with 3.0 and 2.0 mm opposite clear corneal incisions for correction of corneal astigmatism. Cornea. 2019;38:1105–10. https://doi.org/10.1097/ICO.0000000000001915.

    Article  PubMed  Google Scholar 

  95. Muller-Jensen K, Fischer P, Siepe U. Limbal relaxing incisions to correct astigmatism in clear corneal cataract surgery. J Refract Surg. 1999;15:586–9. https://doi.org/10.3928/1081-597X-19990901-12.

    Article  CAS  PubMed  Google Scholar 

  96. Abu-Ain MS, Al-Latayfeh MM, Khan MI. Do limbal relaxing incisions during cataract surgery still have a role? BMC Ophthalmol. 2022;22:102. https://doi.org/10.1186/s12886-022-02327-9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lindstrom RL, Agapitos PJ, Koch DD. Cataract surgery and astigmatic keratotomy. Int Ophthalmol Clin. 1994;34:145–64. https://doi.org/10.1097/00004397-199403420-00011.

  98. Venter J, Blumenfeld R, Schallhorn S, Pelouskova M. Non-penetrating femtosecond laser intrastromal astigmatic keratotomy in patients with mixed astigmatism after previous refractive surgery. J Refract Surg. 2013;29:180–6. https://doi.org/10.3928/1081597X-20130129-09.

    Article  PubMed  Google Scholar 

  99. Hayashi K, Sato T, Yoshida M, Yoshimura K. Corneal shape changes of the total and posterior cornea after temporal versus nasal clear corneal incision cataract surgery. Br J Ophthalmol. 2019;103:181–5. https://doi.org/10.1136/bjophthalmol-2017-311710.

    Article  PubMed  Google Scholar 

  100. Yoon JH, Kim KH, Lee JY, Nam DH. Surgically induced astigmatism after 3.0 mm temporal and nasal clear corneal incisions in bilateral cataract surgery. Indian J Ophthalmol. 2013;61:645–8. https://doi.org/10.4103/0301-4738.119341.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Barequet IS, Yu E, Vitale S, Cassard S, Azar DT, Stark WJ. Astigmatism outcomes of horizontal temporal versus nasal clear corneal incision cataract surgery. J Cataract Refract Surg. 2004;30:418–23. https://doi.org/10.1016/S0886-3350(03)00492-9.

    Article  PubMed  Google Scholar 

  102. Devgan U. Three rules for corneal phaco incisions. August 25 2017, available at: https://www.healio.com/news/ophthalmology/20170811/three-rules-for-corneal-phaco-incisions.

  103. Wang L, Zhao L, Yang X, Zhang Y, Liao D, Wang J. Comparison of outcomes after phacoemulsification with two different corneal incision distances anterior to the limbus. J Ophthalmol. 2019;2019:1760742. https://doi.org/10.1155/2019/1760742.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Camesasca F, Hendricks D, Dewey S, Kieval J, CL. K, T. A. Preferred Keratome for the Cataract Incision. Cataract & Refractive Surgery Today, April 2009, available at: https://crstoday.com/articles/2009-apr/crst0409_07-php/.

  105. Marshall J, Trokel S, Rothery S, Krueger RR. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser. Br J Ophthalmol. 1986;70:482–501. https://doi.org/10.1136/bjo.70.7.482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jacobi FK, Dick HB, Bohle RM. Histological and ultrastructural study of corneal tunnel incisions using diamond and steel keratomes. J Cataract Refract Surg. 1998;24:498–502. https://doi.org/10.1016/s0886-3350(98)80291-5.

    Article  CAS  PubMed  Google Scholar 

  107. Zaki S, Zhang N, Gilchrist MD. Electropolishing and shaping of micro-scale metallic features. Micromachines (Basel). 2022;13:468. https://doi.org/10.3390/mi13030468.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Raevis J, Astafurov K, Wilson B, Laudi J. Post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades. J Cataract Refract Surg. 2020;46:975–8. https://doi.org/10.1097/j.jcrs.0000000000000208.

    Article  PubMed  Google Scholar 

  109. Raevis J, Astafurov K, Laudi J. Reply: Post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades. J Cataract Refract Surg. 2021;47:282–3. https://doi.org/10.1097/j.jcrs.0000000000000565.

    Article  PubMed  Google Scholar 

  110. Osher R, Masket S, Lichtenstein S, Steinert R, Koch D. Reflective particles in the cataract incision. Cataract Refract Surg Today 2005. Accessed September 14, 2020.

  111. Osher RH. Comment on: post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades. J Cataract Refract Surg. 2021;47:281–2. https://doi.org/10.1097/j.jcrs.0000000000000569.

    Article  PubMed  Google Scholar 

  112. Gupta A, Mercieca K, Fahad B, Biswas S. The effectiveness and safety of single-use disposable instruments in cataract surgery-a clinical study using a surgeon-based survey. J Perioper Pr. 2009;19:148–51. https://doi.org/10.1177/175045890901900404.

    Article  CAS  Google Scholar 

  113. Elder M, Leaming D. The New Zealand cataract and refractive surgery survey 2001. Clin Exp Ophthalmol. 2003;31:114–20. https://doi.org/10.1046/j.1442-9071.2003.00616.x.

    Article  PubMed  Google Scholar 

  114. Market Scope. 2020 IOL market report: mid-year update. Market Scope, St. Louis, MO.

  115. Khor HG, Cho I, Lee K, Chieng LL. Waste production from phacoemulsification surgery. J Cataract Refract Surg. 2020;46:215–21. https://doi.org/10.1097/j.jcrs.0000000000000009.

    Article  PubMed  Google Scholar 

  116. Eisner G. Eye Surgery; an Introduction to Operative Technique, 2nd ed. Berlin, Springer-Verlag, 1990.

  117. Akura J, Funakoshi T, Kadonosono K, Saito M. Differences in incision shape based on the keratome bevel. J Cataract Refract Surg. 2001;27:761–5. https://doi.org/10.1016/s0886-3350(00)00743-4.

    Article  CAS  PubMed  Google Scholar 

  118. Kojima T, Kaga T, Watanabe M, Uda K, Naito N, Saito Y, et al. Clinical evaluation of the arched blade for cataract surgery. Acta Ophthalmol Scand. 2005;83:306–11. https://doi.org/10.1111/j.1600-0420.2005.00419.x.

    Article  PubMed  Google Scholar 

  119. Liu DT, Lee VY, Lam DS. Clinical evaluation of the arched blade for cataract surgery. Acta Ophthalmol Scand. 2006;84:559. https://doi.org/10.1111/j.1600-0420.2006.00661.x.

    Article  PubMed  Google Scholar 

  120. Ide T, O’Brien TP. Experimental model for analyzing cutting resistance by various knives for cataract surgery. Clin Exp Ophthalmol. 2010;38:292–9. https://doi.org/10.1111/j.1442-9071.2010.02237.x.

    Article  PubMed  Google Scholar 

  121. Donnenfeld E, Rosenberg E, Boozan H, Davis Z, Nattis A. Randomized prospective evaluation of the wound integrity of primary clear corneal incisions made with a femtosecond laser versus a manual keratome. J Cataract Refract Surg. 2018;44:329–35. https://doi.org/10.1016/j.jcrs.2017.12.026.

    Article  PubMed  Google Scholar 

  122. Benard-Seguin É, Bostan C, Fadous R, Sylvestre-Bouchard A, de Alwis Weerasekera HJ, Giguère CÉ, et al. Optimization of femtosecond laser-constructed clear corneal wound sealability for cataract surgery. J Cataract Refract Surg. 2020;46:1611–7. https://doi.org/10.1097/j.jcrs.0000000000000336.

    Article  PubMed  Google Scholar 

  123. Mayer WJ, Klaproth OK, Hengerer FH, Kook D, Dirisamer M, Priglinger S, et al. In vitro immunohistochemical and morphological observations of penetrating corneal incisions created by a femtosecond laser used for assisted intraocular lens surgery. J Cataract Refract Surg. 2014;40:632–8. https://doi.org/10.1016/j.jcrs.2014.02.015.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author (AFB) initiated and conceived the review and wrote the manuscript. All authors made substantial contributions, reviewed and approved the final manuscript.

Corresponding author

Correspondence to Andreas F. Borkenstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkenstein, A.F., Packard, R., Dhubhghaill, S.N. et al. Clear corneal incision, an important step in modern cataract surgery: a review. Eye 37, 2864–2876 (2023). https://doi.org/10.1038/s41433-023-02440-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02440-z

This article is cited by

Search

Quick links