Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allantopyrone A interferes with the degradation of hypoxia-inducible factor 1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells

Abstract

Allantopyrone A is an α-pyrone metabolite that was originally isolated from the endophytic fungus Allantophomopsis lycopodina KS-97. We previously demonstrated that allantopyrone A exhibits anti-cancer, anti-inflammatory, and neuroprotective activities. In the present study, we showed that allantopyrone A up-regulated the protein expression of hypoxia-inducible factor (HIF)-1α in human fibrosarcoma HT-1080 cells. It also up-regulated the mRNA expression of BNIP3 and ENO1, but not other HIF target genes or HIF1A. Allantopyrone A did not inhibit the prolyl hydroxylation of HIF-1α, but enhanced the ubiquitination of cellular proteins. Consistent with this result, chymotrypsin-like and trypsin-like proteasome activities were reduced, but not completely inactivated by allantopyrone A. Allantopyrone A decreased the amount of proteasome catalytic subunits. Therefore, the present results showed that allantopyrone A interfered with the degradation of HIF-1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  3. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15:635–41.

    Article  CAS  PubMed  Google Scholar 

  6. Wong BW, Kuchnio A, Bruning U, Carmeliet P. Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem Sci. 2013;38:3–11.

    Article  CAS  PubMed  Google Scholar 

  7. Ivan M, Kaelin WG Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol Cell. 2017;66:772–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen C, Kaelin WG Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23:18–25.

    Article  CAS  PubMed  Google Scholar 

  9. Gossage L, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64.

    Article  CAS  PubMed  Google Scholar 

  10. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol. 2016;18:356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12.

    Article  PubMed  Google Scholar 

  13. Baldewijns MM, van Vlodro IJH, Vermeulen PB, Soetekouw PMMB, van Engeland M, et al. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.

    Article  CAS  PubMed  Google Scholar 

  14. Shiono Y, Yokoi M, Koseki T, Murayama T, Aburai N, et al. Allantopyrone A, a new α-pyrone metabolite with potent cytotoxicity from an endophytic fungus, Allantophomopsis lycopondina KS-97. J Antibiot. 2010;63:251–3.

    Article  CAS  Google Scholar 

  15. Schüffler A, Liermann JC, Opatz T, Anke T. Elucidation of the biosynthesis and degradation of allantofuranone by iso-topic labelling and fermentation of modified precursors. ChemBioChem. 2011;12:148–54.

    Article  PubMed  Google Scholar 

  16. Elsbaey M, Tanaka C, Miyamoto T. Allantopyrone E, a rare α-pyrone metabolite from the mangrove derived fungus Aspergillus versicolor. Nat Prod Res. 2022;36:760–4.

    Article  CAS  PubMed  Google Scholar 

  17. Uesugi S, Muroi M, Kondoh Y, Shiono Y, Osada H, et al. Allantopyrone A activates Keap1-Nrf2 pathway and protects PC12 cells from oxidative stress-induced cell death. J Antibiot. 2017;70:429–34.

    Article  CAS  Google Scholar 

  18. Yokoigawa J, Morimoto K, Shiono Y, Uesugi S, Kimura K, et al. Allantopyrone A, an α-pyrone metabolite from an endophytic fungus, inhibits the tumor necrosis factor α-induced nuclear factor κB signaling pathway. J Antibiot. 2015;68:71–5.

    Article  CAS  Google Scholar 

  19. Quach HT, Tanigaki R, Yokoigawa J, Yamada Y, Miwa M, et al. Allantopyrone A interferes with multiple components of the TNF receptor 1 complex and blocks RIP1 modifications in the TNF-α-induced signaling pathway. J Antibiot. 2017;70:929–36.

    Article  CAS  Google Scholar 

  20. Kondo T, Takeda K, Muko R, Ito A, Chang YC, et al. 4-O-Methylascochlorin inhibits the prolyl hydroxylation of hypoxia-inducible factor-1α, which is attenuated by ascorbate. J Antibiot. 2019;72:271–81.

    Article  CAS  Google Scholar 

  21. Zhang Y, Lian F, Zhu Y, Xia M, Wang Q, et al. Cyanidin-3-O-β-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IκBα phosphorylation in THP-1 cells. Inflamm Res. 2010;59:723–30.

    Article  CAS  PubMed  Google Scholar 

  22. Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, et al. Recruitment of HIF-1α and HIF-2α to common target genes is differently regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell. 2006;10:413–23.

    Article  CAS  PubMed  Google Scholar 

  23. Spirina LV, Yurmazov ZA, Gorbunov AK, Usynin EA, Lushnikova NA, et al. Molecular protein and expression profile in the primary tuors of clear cell renal carcinoma and metastases. Cells. 2020;9:1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konieczna A, Szczepańska A, Sawiuk K, Węgrzyn G, Łyżeń R. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biol. 2015;16:16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypotoxic cells. Cell. 2007;129:111–21.

    Article  CAS  PubMed  Google Scholar 

  26. Gillespie DL, Whang K, Ragel BT, Flynn JR, Kelly DA, et al. Silencing of hypoxia inducible factor-1α by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res. 2007;13:2441–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sun X, Huang Q, Peng F, Wang J, Zhao W, et al. Expression and clinical significance of HKII and HIF-1α in grade groups of prostate cancer. Front. Genet. 2021;12:680928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park HS, Kim JH, Sun BK, Song SU, Suh W, et al. Hypoxia induces glucose uptake and metabolism of adipose-derived stem cells. Mol Med Rep. 2016;14:4706–14.

    Article  CAS  PubMed  Google Scholar 

  29. Karagiota A, Kanoura A, Paraskeva E, Simos G, Chachami G Pyruvate dehydrogenase phosphatase 1 (PDP1) stimulates HIF activity by supporting histone acetylation under hypoxia. FEBS J. 2022, in press, https://doi.org/10.1111/febs.16694.

  30. Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol. Cell. 2007;28:941–53.

    Article  CAS  PubMed  Google Scholar 

  31. Futamura Y, Muroi M, Aono H, Kawatani M, Hasashida M, et al. Bioenergetic and proteomic profiling to screen small molecule inhibitors that target metabolisms. Biochim Biophys Acta Proteins Proteom. 2019;1867:28–37.

    Article  CAS  PubMed  Google Scholar 

  32. Moon JY, Miyazaki T, Muroi M, Watanabe N, Shin R. Isolation of novel chemical components and their plant garget proteins under selenium stress. Methods Enzymol. 2023;680:421–38.

    Article  PubMed  Google Scholar 

  33. Chinnadurai G, Vijayalingam S, Gibson SB. BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene. 2009;27:S114–27.

    Article  Google Scholar 

  34. Pagès G, Pouysségur J. Transcriptional regulation of the vascular endothelial growth factor gene–a concert of activating factors. Cardiovasc Res. 2005;65:564–73.

    Article  PubMed  Google Scholar 

  35. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007;12:108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71:170–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Besche HC, Haas W, Gygi SP, Goldberg AL. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry. 2009;48:2538–49.

    Article  CAS  PubMed  Google Scholar 

  38. Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281:8582–90.

    Article  CAS  PubMed  Google Scholar 

  39. Harer SL, Bhatia MS, Bhatia NM. Proteasome inhibitors mechanism; source for design of newer therapeutic agents. J Antibiot. 2012;65:279–88.

    Article  CAS  Google Scholar 

  40. Kataoka T. Chemical biology of inflammatory cytokine signaling. J Antibiot. 2009;62:655–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Takehiro Suzuki (RIKEN CSRS) and Dr. Naoshi Dohmae (RIKEN CSRS) for protein identification. This work was partly supported by JSPS KAKENHI Grant number 19H02885 (to T.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Kataoka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuda, C., Ueda, Y., Muroi, M. et al. Allantopyrone A interferes with the degradation of hypoxia-inducible factor 1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells. J Antibiot 76, 324–334 (2023). https://doi.org/10.1038/s41429-023-00610-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00610-5

Search

Quick links