Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cutting-edge progress of immune-checkpoint blockade in lung cancer

Abstract

Great advances in immune checkpoint blockade have resulted in a paradigm shift in patients with lung cancer. Immune-checkpoint inhibitor (ICI) treatment, either as monotherapy or combination therapy, has been established as the standard of care for patients with locally advanced/metastatic non-small cell lung cancer without EGFR/ALK alterations or extensive-stage small cell lung cancer. An increasing number of clinical trials are also ongoing to further investigate the role of ICIs in patients with early-stage lung cancer as neoadjuvant or adjuvant therapy. Although PD-L1 expression and tumor mutational burden have been widely studied for patient selection, both of these biomarkers are imperfect. Due to the complex cancer-immune interactions among tumor cells, the tumor microenvironment and host immunity, collaborative efforts are needed to establish a multidimensional immunogram to integrate complementary predictive biomarkers for personalized immunotherapy. Furthermore, as a result of the wide use of ICIs, managing acquired resistance to ICI treatment remains an inevitable challenge. A deeper understanding of the underlying biological mechanisms of acquired resistance to ICIs is helpful to overcome these obstacles. In this review, we describe the cutting-edge progress made in patients with lung cancer, the optimal duration of ICI treatment, ICIs in some special populations, the unique response patterns during ICI treatment, the emerging predictive biomarkers, and our understanding of primary and acquired resistance mechanisms to ICI treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doroshow, D. B. et al. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin. Cancer Res. 25, 4592–4602 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet https://doi.org/10.1016/S0140-6736(16)32517-X (2016).

  6. Fehrenbacher, L. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387, 1837–1846 (2016).

    CAS  PubMed  Google Scholar 

  7. Goldstraw, P. et al. The IASLC lung cancer staging project: proposals for revision of the TNM Stage Groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 39–51 (2016).

    PubMed  Google Scholar 

  8. Gettinger, S. et al. Five-year follow-up of nivolumab in previously treated advanced non-small-cell lung cancer: results from the CA209-003 study. J. Clin. Oncol. 36, 1675–1684 (2018).

    CAS  PubMed  Google Scholar 

  9. Garon, E. B. et al. Five-year overall survival for patients with advanced nonsmall-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J. Clin. Oncol. 37, 2518–2527 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    CAS  PubMed  Google Scholar 

  11. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    CAS  PubMed  Google Scholar 

  12. Reck, M. et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 37, 537–546 (2019).

    CAS  PubMed  Google Scholar 

  13. Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

    CAS  PubMed  Google Scholar 

  14. Spigel, D. et al. IMpower110: Interim overall survival (OS) analysis of a phase III study of atezolizumab (atezo) vs platinum-based chemotherapy (chemo) as first-line (1L) treatment (tx) in PD-L1-selected NSCLC. Ann. Oncol. 30, 915–915 (2019).

    Google Scholar 

  15. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Spigel D. et al. LBA78 - IMpower110: Interim overall survival (OS) analysis of a phase III study of atezolizumab (atezo) vs platinum-based chemotherapy (chemo) as first-line (1L) treatment (tx) in PD-L1–selected NSCLC. Ann. Oncol. 30 (2019).

  17. Melero, I. et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 15, 457–472 (2015).

    CAS  PubMed  Google Scholar 

  18. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    CAS  PubMed  Google Scholar 

  19. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    CAS  PubMed  Google Scholar 

  20. Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).

    CAS  PubMed  Google Scholar 

  21. West, H. et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 924–937 (2019).

    CAS  PubMed  Google Scholar 

  22. Papadimitrakopoulou, V. et al. IMpower132: PFS and safety results with 1l atezolizumab plus carboplatin/cisplatin plus pemetrexed in stage IV non-squamous NSCLC. J. Thorac. Oncol. 13, S332–S333 (2018).

    Google Scholar 

  23. Zhou, C. et al. A randomized phase 3 study of camrelizumab plus chemotherapy as 1st line therapy for advanced/metastatic non-squamous non-small cell lung cancer. J. Thorac. Oncol. 14, S215–S216 (2019).

    Google Scholar 

  24. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    CAS  PubMed  Google Scholar 

  25. Jotte, R. et al. Atezolizumab in combination with carboplatin and Nab-Paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase III trial. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2020.03.028 (2020).

  26. Hellmann, M. D. et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 18, 31–41 (2017).

    CAS  PubMed  Google Scholar 

  27. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    CAS  PubMed  Google Scholar 

  29. Ramalingam, S. et al. Nivolumab + ipilimumab versus platinum-doublet chemotherapy as first-line treatment for advanced non-small cell lung cancer: three-year update from CheckMate 227 Part 1. J. Clin. Oncol. 38 (suppl; abstr 9500) (2020).

  30. Reck, M. et al. Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA. J. Clin. Oncol. 38 (suppl; abstr 9501) (2020).

  31. Rizvi, N. A. et al. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.0237 (2020).

  32. Dafni, U., Tsourti, Z., Vervita, K. & Peters, S. Immune checkpoint inhibitors, alone or in combination with chemotherapy, as first-line treatment for advanced non-small cell lung cancer. A systematic review and network meta-analysis. Lung Cancer 134, 127–140 (2019).

    PubMed  Google Scholar 

  33. Kim, R. et al. First-line pembrolizumab versus pembrolizumab plus chemotherapy versus chemotherapy alone in non-small-cell lung cancer: a systematic review and network meta-analysis. Clin. Lung Cancer 20, 331–338 e334 (2019).

    CAS  PubMed  Google Scholar 

  34. Liu, J., Li, C., Seery, S., Yu, J. & Meng, X. Identifying optimal first-line interventions for advanced non-small cell lung carcinoma according to PD-L1 expression: a systematic review and network meta-analysis. Oncoimmunology 9, 1746112 (2020).

    PubMed  PubMed Central  Google Scholar 

  35. Robert, C. et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol. 36, 1668–166 (2018).

    CAS  PubMed  Google Scholar 

  36. Jansen, Y. J. L. et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma. Ann. Oncol. 30, 1154–1161 (2019).

    CAS  PubMed  Google Scholar 

  37. Warner, A. B. et al. Long-term outcomes and responses to retreatment in patients with melanoma treated with PD-1 blockade. J. Clin. Oncol. 38, 1655–165 (2020).

    Google Scholar 

  38. Garon, E. B. et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J. Clin. Oncol. 37, 2518–251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Herbst, R. S. et al. Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1 positive, advanced nonsmall-cell lung cancer in the KEYNOTE-010 study. J. Clin. Oncol. 38, 1580–158 (2020).

    CAS  PubMed  Google Scholar 

  40. Spigel, D. R. et al. Randomized results of fixed-duration (1-yr) vs continuous nivolumab in patients (pts) with advanced non-small cell lung cancer (NSCLC). Ann. Oncol. 28 (2017).

  41. Robert, C. et al. Immunotherapy discontinuation—how, and when? Data from melanoma as a paradigm. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-020-0399-6 (2020).

  42. Castello, A., Rossi, S., Toschi, L. & Lopci, E. Comparison of metabolic and morphological response criteria for early prediction of response and survival in NSCLC patients treated with anti-PD-1/PD-L1. Front. Oncol. 10, https://doi.org/10.3389/fonc.2020.01090 (2020).

  43. Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. CD-20-0047, (2020).

  44. Hanna, N. et al. Phase III study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage III non-small-cell lung cancer: the Hoosier Oncology Group and U.S. Oncology. J. Clin. Oncol. 26, 5755–5760 (2008).

    CAS  PubMed  Google Scholar 

  45. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    CAS  PubMed  Google Scholar 

  46. Gray, J. E. et al. Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC—update from PACIFIC. J. Thorac. Oncol. 15, 288–293 (2020).

    CAS  PubMed  Google Scholar 

  47. Jabbour, S. K. et al. Phase II study of pembrolizumab (pembro) plus platinum doublet chemotherapy and radiotherapy as first-line therapy for unresectable, locally advanced stage III NSCLC: KEYNOTE-799. J. Clin. Oncol. 38, 9008–9008 (2020).

    Google Scholar 

  48. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cascone, T. et al. Neoadjuvant nivolumab (N) or nivolumab plus ipilimumab (NI) for resectable non-small cell lung cancer (NSCLC): clinical and correlative results from the NEOSTAR study. J. Clin. Oncol. 37, 8504–8504 (2019).

    Google Scholar 

  50. Rusch, V. W. et al. Neoadjuvant atezolizumab in resectable non-small cell lung cancer (NSCLC): Initial results from a multicenter study (LCMC3). J. Clin. Oncol. 36, https://doi.org/10.1200/JCO.2018.36.15_suppl.8541 (2018).

  51. Gao, S. et al. Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2020.01.017 (2020).

  52. Shu, C. A. et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(20)30140-6 (2020).

  53. Provencio, M. et al. Neoadjuvant chemo-immunotherapy for the treatment of stage IIIA resectable non-small-cell lung cancer (NSCLC): a phase II multicenter exploratory study-Final data of patients who underwent surgical assessment. J. Clin. Oncol. 37 (2019).

  54. Han, J. et al. TCR repertoire diversity of peripheral PD-1(+)CD8(+) T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer. Cancer Immunol. Res. 8, 146–154 (2020).

    CAS  PubMed  Google Scholar 

  55. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).

    PubMed  Google Scholar 

  56. McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, https://doi.org/10.1126/scitranslmed.aax7392 (2019).

  57. Tiseo, M. et al. Italian, multicenter, phase III, randomized study of cisplatin plus etoposide with or without bevacizumab as first-line treatment in extensive-disease small-cell lung cancer: the GOIRC-AIFA FARM6PMFJM trial. J. Clin. Oncol. 35, 1281–1287 (2017).

    CAS  PubMed  Google Scholar 

  58. Reck, M. et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J. Clin. Oncol. 34, 3740–3748 (2016).

    CAS  PubMed  Google Scholar 

  59. Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    CAS  PubMed  Google Scholar 

  60. Rudin, C. M. et al. Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study. J. Clin. Oncol. JCO2000793, https://doi.org/10.1200/JCO.20.00793 (2020).

  61. Ticiana, L., Yating, W., Afshin, D. et al. Randomized phase II clinical trial of cisplatin/carboplatin and etoposide (CE) alone or in combination with nivolumab as frontline therapy for extensive-stage small cell lung cancer (ES-SCLC): ECOG-ACRIN EA5161. J. Clin. Oncol. 38: 2020 (suppl; abstr 9000).

  62. Ott, P. A. et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J. Clin. Oncol. 35, 3823–3829 (2017).

    CAS  PubMed  Google Scholar 

  63. Ready, N. et al. Third-line nivolumab monotherapy in recurrent SCLC: CheckMate 032. J. Thorac. Oncol. 14, 237–244 (2019).

    CAS  PubMed  Google Scholar 

  64. Chung, H. C. et al. Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic SCLC: results from the KEYNOTE-028 and KEYNOTE-158 studies. J. Thorac. Oncol. 15, 618–627 (2020).

    CAS  PubMed  Google Scholar 

  65. Lee, C. K. et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer—a meta-analysis. J. Thorac. Oncol. 12, 403–407 (2017).

    PubMed  Google Scholar 

  66. Lee, C. K. et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 4, 210–216 (2018).

    PubMed  Google Scholar 

  67. Dong, Z. Y. et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 6, e1356145 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22, 4585–4593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lisberg, A. et al. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naive patients with advanced NSCLC. J. Thorac. Oncol. 13, 1138–1145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang J, et al. MA11.06 A PII Study of Toripalimab, a PD-1 mAb, in Combination with Chemotherapy in EGFR+ Advanced NSCLC Patients Failed to Prior EGFR TKI Therapies. J. Thorac. Oncol. 14(10, Supplement), S292 (2019).

  71. Haratani, K. et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann. Oncol. 28, 1532–1539 (2017).

    CAS  PubMed  Google Scholar 

  72. Hastings, K. et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann. Oncol. 30, 1311–1320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hendriks, L. E. L. et al. Outcome of patients with non-small cell lung cancer and brain metastases treated with checkpoint inhibitors. J. Thorac. Oncol. 14, 1244–1254 (2019).

    CAS  PubMed  Google Scholar 

  74. Crino, L. et al. Nivolumab and brain metastases in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer 129, 35–40 (2019).

    PubMed  Google Scholar 

  75. Goldberg, S. B. et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 21, 655–663 (2020).

  76. Pao, W. et al. Tissue-specific immunoregulation: a call for better understanding of the “immunostat” in the context of cancer. Cancer Discov. 8, 395–402 (2018).

    CAS  PubMed  Google Scholar 

  77. Tumeh, P. C. et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol. Res 5, 417–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    CAS  PubMed  Google Scholar 

  79. Su, C., Zhou, F., Shen, J., Zhao, J. & O’Brien, M. Treatment of elderly patients or patients who are performance status 2 (PS2) with advanced non-small cell lung cancer without epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) translocations—still a daily challenge. Eur. J. Cancer 83, 266–278 (2017).

    CAS  PubMed  Google Scholar 

  80. Spigel, D. R. et al. Safety, efficacy, and patient-reported health-related quality of life and symptom burden with nivolumab in patients with advanced non-small cell lung cancer, including patients aged 70 years or older or with poor performance status (CheckMate 153). J. Thorac. Oncol. 14, 1628–1639 (2019).

    CAS  PubMed  Google Scholar 

  81. Felip, E. et al. CheckMate 171: A phase 2 trial of nivolumab in patients with previously treated advanced squamous non-small cell lung cancer, including ECOG PS 2 and elderly populations. Eur. J. Cancer 127, 160–172 (2020).

    CAS  PubMed  Google Scholar 

  82. Middleton, G. et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): a single arm, phase 2 trial. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(20)30033-3 (2020).

  83. Cook, M. R. & Kim, C. Safety and efficacy of immune checkpoint inhibitor therapy in patients with HIV infection and advanced-stage cancer: a systematic review. JAMA Oncol. 5, 1049–1054 (2019).

    PubMed  Google Scholar 

  84. Gonzalez-Cao, M. et al. Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.0465 (2020).

  85. Zhang, X. et al. Hepatitis B virus reactivation in cancer patients with positive Hepatitis B surface antigen undergoing PD-1 inhibition. J. Immunother. Cancer 7, 322 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Shah, N. J. et al. Safety and efficacy of immune checkpoint inhibitors (ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J. Immunother. Cancer 7, 353 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Champiat, S. et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 15, 748–762 (2018).

    CAS  PubMed  Google Scholar 

  88. Wang, X., Wang, F., Zhong, M., Yarden, Y. & Fu, L. The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol. Cancer 19, 81 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Champiat, S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017).

    CAS  PubMed  Google Scholar 

  90. Ferrara, R. et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4, 1543–1552 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Kim, C. G. et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann. Oncol. 30, 1104–1113 (2019).

    CAS  PubMed  Google Scholar 

  92. Lo Russo, G. et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin. Cancer Res. 25, 989–999 (2019).

    CAS  PubMed  Google Scholar 

  93. Kato, S. et al. Hyperprogressors after Immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242–4250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiong, D. et al. Immunogenomic landscape contributes to hyperprogressive disease after Anti-PD-1 immunotherapy for cancer. iScience 9, 258–277 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, J. Y. et al. Hyperprogressive disease during anti-PD-1 (PDCD1) / PD-L1 (CD274) therapy: a systematic review and meta-analysis. Cancers 11, https://doi.org/10.3390/cancers11111699 (2019).

  96. Kamada, T. et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou, C. et al. A randomized phase 3 study of camrelizumab plus chemotherapy as 1st line therapy for advanced/metastatic non-squamous non-small cell lung cancer. J. Thorac. Oncol. 14, S215–S216 (2019).

    Google Scholar 

  98. Arasanz, H. et al. Early detection of hyperprogressive disease in non-small cell lung cancer by monitoring of systemic T cell dynamics. Cancers 12, https://doi.org/10.3390/cancers12020344 (2020).

  99. Jia, W., Gao, Q., Han, A., Zhu, H. & Yu, J. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. Cancer Biol. Med. 16, 655–670 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Fujimoto, D. et al. Pseudoprogression in previously treated patients with non-small cell lung cancer who received nivolumab monotherapy. J. Thorac. Oncol. 14, 468–474 (2019).

    CAS  PubMed  Google Scholar 

  101. Katz, S. I. et al. Radiologic pseudoprogression during anti-PD-1 therapy for advanced non-small cell lung cancer. J. Thorac. Oncol. 13, 978–986 (2018).

    PubMed  Google Scholar 

  102. Lee, J. H. et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 4, 717–721 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Sanmamed, M. F. et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann. Oncol. 28, 1988–1995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gaule, P. et al. A Quantitative Comparison of Antibodies to Programmed Cell Death 1 Ligand 1. JAMA Oncol. 3, 256–259 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Hong, L. et al. Programmed death ligand 1 heterogeneity and its impact on benefit from immune checkpoint inhibitors in non-small-cell lung cancer. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2020.04.026 (2020).

  106. Herbst, R. S. et al. Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: an updated analysis of KEYNOTE-010 trial. Ann. Oncol. 30, 281–289 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirsch, F. R. et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12, 208–222 (2017).

    PubMed  Google Scholar 

  108. Tsao, M. S. et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J. Thorac. Oncol. 13, 1302–1311 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Zhang, X. et al. Distinct contribution of PD-L1 suppression by spatial expression of PD-L1 on tumor and non-tumor cells. Cell Mol. Immunol. 16, 392–400 (2019).

    PubMed  Google Scholar 

  110. Wang, Z. et al. Comutations in DNA damage response pathways serve as potential biomarkers for immune checkpoint blockade. Cancer Res. 78, 6486–6496 (2018).

    CAS  PubMed  Google Scholar 

  111. Gandara, D. R. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med. 24, 1441–1448 (2018).

    CAS  PubMed  Google Scholar 

  112. Wang, Z. et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol. 5, 696–702 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    CAS  PubMed  Google Scholar 

  114. Langer, C. et al. KEYNOTE-021: TMB and outcomes for carboplatin and pemetrexed with or without pembrolizumab for nonsquamous NSCLC. J. Thorac. Oncol. 14, S216 (2019).

    Google Scholar 

  115. Garassino, M. et al. Evaluation of TMB in KEYNOTE-189: pembrolizumab plus chemotherapy vs placebo plus chemotherapy for nonsquamous NSCLC. J. Thorac. Oncol. 14, S216–S217 (2019).

    Google Scholar 

  116. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Prat, A. et al. Immune-related gene expression profiling after pd-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS  PubMed  Google Scholar 

  118. Ott, P. A. et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 37, 318–327 (2019).

    PubMed  Google Scholar 

  119. Simoni, Y. et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    CAS  PubMed  Google Scholar 

  120. Kim, K. H. et al. PD-1 blockade-unresponsive human tumor-infiltrating CD8(+) T cells are marked by loss of CD28 expression and rescued by IL-15. Cell Mol. Immunol. https://doi.org/10.1038/s41423-020-0427-6 (2020).

  121. Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1(+)CD38(hi) cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    CAS  PubMed  Google Scholar 

  124. Valpione, S. et al. Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Kagamu, H. et al. CD4(+) T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol. Res. 8, 334–344 (2020).

    CAS  PubMed  Google Scholar 

  126. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, D. H. et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp. Mol. Med. 51, 1–13 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Del, Re,M. et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br. J. Cancer 118, 820–824 (2018).

    Google Scholar 

  129. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Goldberg, S. B. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin. Cancer Res. 24, 1872–1880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hellmann, M. D. et al. Circulating tumor DNA analysis to assess risk of progression after long-term response to PD-(L)1 blockade in NSCLC. Clin. Cancer Res. 26, 2849–2858 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Jia, Q. et al. Tracking neoantigens by personalized circulating tumor DNA sequencing during checkpoint blockade immunotherapy in non-small cell lung cancer. Adv. Sci. 7, 1903410 (2020).

    CAS  Google Scholar 

  134. Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020).

    PubMed  Google Scholar 

  135. Momcilovic, M. & Shackelford, D. B. Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Br. J. Cancer 113, 574–584 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Papillon-Cavanagh, S., Doshi, P., Dobrin, R., Szustakowski, J. & Walsh, A. M. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open 5, https://doi.org/10.1136/esmoopen-2020-000706 (2020).

  137. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Biton, J. et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin. Cancer Res. 24, 5710–5723 (2018).

    CAS  PubMed  Google Scholar 

  139. Kitajima, S. et al. Suppression of STING associated with LKB1 loss in KRAS-Driven. Lung Cancer Cancer Discov. 9, 34–45 (2019).

    CAS  PubMed  Google Scholar 

  140. Ager, C. R. et al. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res. 5, 676–684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang-Bishop, L. et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma. J. Immunother. Cancer 8, https://doi.org/10.1136/jitc-2019-000282 (2020).

  142. Chen, X., Su, C., Ren, S., Zhou, C. & Jiang, T. Pan-cancer analysis of KEAP1 mutations as biomarkers for immunotherapy outcomes. Ann. Transl. Med. 8, 141 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Jiang, T. et al. Genomic landscape and its correlations with tumor mutational burden, PD-L1 expression, and immune cells infiltration in Chinese lung squamous cell carcinoma. J. Hematol. Oncol. 12, 75 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, C. et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin. Cancer Res. 19, 393–403 (2013).

    CAS  PubMed  Google Scholar 

  146. Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).

    CAS  PubMed  Google Scholar 

  147. Kang, S. H. et al. Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology 8, e1515057 (2019).

    PubMed  Google Scholar 

  148. Liu, L. et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 21, 1639–1651 (2015).

    CAS  PubMed  Google Scholar 

  149. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ding, Y., Shen, S., Lino, A. C., Curotto de Lafaille, M. A. & Lafaille, J. J. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat. Med. 14, 162–169 (2008).

    CAS  PubMed  Google Scholar 

  151. Dai, W. et al. Blockade of Wnt/beta-catenin pathway aggravated silica-induced lung inflammation through tregs regulation on Th immune responses. Mediators Inflamm. 2016, 6235614 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Kaler, P., Augenlicht, L. & Klampfer, L. Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene 28, 3892–3902 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, X. et al. WNT/beta-catenin signaling pathway regulating T cell-inflammation in the tumor microenvironment. Front Immunol. 10, 2293 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    CAS  PubMed  Google Scholar 

  155. George, S. et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197–204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Trujillo, J. A. et al. Secondary resistance to immunotherapy associated with beta-catenin pathway activation or PTEN loss in metastatic melanoma. J. Immunother. Cancer 7, 295 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. Bach, E. A., Aguet, M. & Schreiber, R. D. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev. Immunol. 15, 563–591 (1997).

    CAS  PubMed  Google Scholar 

  158. Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao, J. et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to Anti-CTLA-4 therapy. Cell 167, 397–404 e399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    CAS  PubMed  Google Scholar 

  163. Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Rizvi, H. et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 36, 633–641 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou, L., Mudianto, T., Ma, X., Riley, R. & Uppaluri, R. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clin. Cancer Res. 26, 290–300 (2020).

    CAS  PubMed  Google Scholar 

  166. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, https://doi.org/10.1038/ncomms10501 (2016).

  167. Camidge, D. R., Pao, W. & Sequist, L. V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473–481 (2014).

    CAS  PubMed  Google Scholar 

  168. Abdallah, N. et al. Non-small cell to small cell lung cancer on PD-1 inhibitors: two cases on potential histologic transformation. Lung Cancer 9, 85–90 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Iams, W. T. et al. Small cell lung cancer transformation as a mechanism of resistance to PD-1 therapy in KRAS-mutant lung adenocarcinoma: a report of two cases. J. Thorac. Oncol. 14, e45–e48 (2019).

    PubMed  Google Scholar 

  170. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 3503 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Gong, B. et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J. Exp. Med. 216, 982–1000 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  173. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  175. Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients With NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    CAS  PubMed  Google Scholar 

  176. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 369, 1481–1489 (2020).

  177. Tomita, Y. et al. Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunol. Res. 8, 1236–1242 (2020).

Download references

Acknowledgements

This work was partly supported by grants from the National Natural Science Foundation of China (No. 81703020, 81871865, 81972169), National R&D projects (2016YFC0902300), and Shanghai Science and Technology Medical Guidance Project (16411964400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caicun Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Qiao, M. & Zhou, C. The cutting-edge progress of immune-checkpoint blockade in lung cancer. Cell Mol Immunol 18, 279–293 (2021). https://doi.org/10.1038/s41423-020-00577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00577-5

Keywords

This article is cited by

Search

Quick links