Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TSPAN1 inhibits metastasis of nasopharyngeal carcinoma via suppressing NF-kB signaling

Abstract

Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TSPAN1 mRNA levels are downregulated in high-metastasis NPC cells which is correlated with poorer prognosis in several types of malignancies.
Fig. 2: Overexpressing TSPAN1 suppressed cellular motility while silencing TSPAN1 promoted cellular motility in NPC cells.
Fig. 3: TSPAN1 inhibits NPC metastasis in vivo.
Fig. 4: TSPAN1 prevents the activation of NF-kB signaling.
Fig. 5: TSPAN1 suppresses NF-kB signaling via interacting with IKBB.

Similar content being viewed by others

Data availability

Additional data can be obtained from the corresponding author upon request.

References

  1. Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, et al. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol. 2021;18:679–95.

    Article  CAS  PubMed  Google Scholar 

  2. Cao SM, Simons MJ, Qian CN. The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer. 2011;30:114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie SH, Huang RQ, Liu YL, Cao SM, Qian CN, et al. An increase in early cancer detection rates at a single cancer center: experiences from Sun Yat-sen University cancer center. Vis Cancer Med. 2022. https://doi.org/10.1051/vcm/2022001.

  4. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80.

    Article  PubMed  Google Scholar 

  5. Guo LL, Wang HY, Zheng LS, Wang MD, Cao Y, Li Y, et al. Metastasis of nasopharyngeal carcinoma: what we know and do not know. Vis Cancer Med. 2021. https://doi.org/10.1051/vcm/2021003.

  6. Ng WT, Corry J, Langendijk JA, Lee AWM, Mäkitie A, Mendenhall WM, et al. Current management of stage IV nasopharyngeal carcinoma without distant metastasis. Cancer Treat Rev. 2020;85:101995.

    Article  CAS  PubMed  Google Scholar 

  7. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 2003;19:397–422.

    Article  CAS  PubMed  Google Scholar 

  8. Lang T, Hochheimer N. Tetraspanins. Curr Biol. 2020;30:R204–r206.

    Article  CAS  PubMed  Google Scholar 

  9. Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharm. 2014;171:5462–90.

    Article  CAS  Google Scholar 

  10. Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6:801–11.

    Article  CAS  PubMed  Google Scholar 

  11. Hou FQ, Lei XF, Yao JL, Wang YJ, Zhang W. Tetraspanin 1 is involved in survival, proliferation and carcinogenesis of pancreatic cancer. Oncol Rep. 2015;34:3068–76.

    Article  CAS  PubMed  Google Scholar 

  12. Lu Z, Luo T, Nie M, Pang T, Zhang X, Shen X, et al. TSPAN1 functions as an oncogene in gastric cancer and is downregulated by miR-573. FEBS Lett. 2015;589:1988–94.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou C, Liang Y, Zhou L, Yan Y, Liu N, Zhang R, et al. TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy. 2020;55:1-21.

  14. Wang Y, Liang Y, Yang G, Lan Y, Han J, Wang J, et al. Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling. J Exp Clin Cancer Res. 2018;37:300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58:1189–205.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Mayea Y, Mir C, Carballo L, Castellvi J, Temprana-Salvador J, Lorente J, et al. TSPAN1: A novel protein involved in head and neck squamous cell carcinoma chemoresistance. Cancers Basel. 2020;12:56–88.

  17. Yang L, Wang Y, Pan Z, Gao S, Zou B, Lin Z, et al. Tetraspanin 1 inhibits TNFα-induced apoptosis via NF-κB signaling pathway in alveolar epithelial cells. Inflamm Res. 2018;67:951–64.

    Article  CAS  PubMed  Google Scholar 

  18. Meng DF, Sun R, Liu GY, Peng LX, Zheng LS, Xie P, et al. S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene. 2020;39:5307–22.

    Article  CAS  PubMed  Google Scholar 

  19. Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol. 2020;61:84–100.

    Article  CAS  PubMed  Google Scholar 

  20. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng LS, Yang JP, Cao Y, Peng LX, Sun R, Xie P, et al. SPINK6 promotes metastasis of nasopharyngeal carcinoma via binding and activation of epithelial growth factor receptor. Cancer Res. 2017;77:579–89.

    Article  CAS  PubMed  Google Scholar 

  22. Peng LX, Wang MD, Xie P, Yang JP, Sun R, Zheng LS, et al. LACTB promotes metastasis of nasopharyngeal carcinoma via activation of ERBB3/EGFR-ERK signaling resulting in unfavorable patient survival. Cancer Lett. 2021;498:165–77.

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, et al. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 2006;66:10365–76.

    Article  CAS  PubMed  Google Scholar 

  25. Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006;66:7999–8006.

    Article  CAS  PubMed  Google Scholar 

  26. Yang XH, Kovalenko OV, Kolesnikova TV, Andzelm MM, Rubinstein E, Strominger JL, et al. Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J Biol Chem. 2006;281:12976–85.

    Article  CAS  PubMed  Google Scholar 

  27. Liu G, Wang Y, Yang L, Zou B, Gao S, Song Z, et al. Tetraspanin 1 as a mediator of fibrosis inhibits EMT process and Smad2/3 and beta-catenin pathway in human pulmonary fibrosis. J Cell Mol Med. 2019;23:3583–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stinnesbeck M, Kristiansen A, Ellinger J, Hauser S, Egevad L, Tolkach Y, et al. Prognostic role of TSPAN1, KIAA1324 and ESRP1 in prostate cancer. Apmis. 2021;129:204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong S, Wang Q, Zheng L, Gao F, Li J. Identification of candidate molecular markers of nasopharyngeal carcinoma by tissue microarray and in situ hybridization. Med Oncol. 2011;28:S341–8.

    Article  PubMed  Google Scholar 

  30. von Ahrens D, Bhagat TD, Nagrath D, Maitra A, Verma A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol. 2017;10:76.

    Article  Google Scholar 

  31. Hsueh YS, Chang HH, Shan YS, Sun HS, Fletcher JA, Li CF, et al. Nuclear KIT induces a NFKBIB-RELA-KIT autoregulatory loop in imatinib-resistant gastrointestinal stromal tumors. Oncogene. 2019;38:6550–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021;8:287–97.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Huo K, Ma L, Tang L, Li D, Huang X, et al. Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol. 2011;7:536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang W, Liu L, Li C, Luo N, Chen R, Li L, et al. TRIM52 plays an oncogenic role in ovarian cancer associated with NF-kB pathway. Cell Death Dis. 2018;9:908.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun W, Guo MM, Han P, Lin JZ, Liang FY, Tan GM, et al. Id-1 and the p65 subunit of NF-κB promote migration of nasopharyngeal carcinoma cells and are correlated with poor prognosis. Carcinogenesis. 2012;33:810–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wong JH, Lui VW, Umezawa K, Ho Y, Wong EY, Ng MH, et al. A small molecule inhibitor of NF-kappaB, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses growth and invasion of nasopharyngeal carcinoma (NPC) cells. Cancer Lett. 2010;287:23–32.

    Article  CAS  PubMed  Google Scholar 

  37. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.

    Article  CAS  PubMed  Google Scholar 

  38. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  39. Malek S, Chen Y, Huxford T, Ghosh G. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. J Biol Chem. 2001;276:45225–35.

    Article  CAS  PubMed  Google Scholar 

  40. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621–63.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Zhang Y, Nilsson CL, Berven FS, Andrén PE, Carlsohn E, et al. Association of chromosome 19 to lung cancer genotypes and phenotypes. Cancer Metast Rev. 2015;34:217–26.

    Article  Google Scholar 

  42. Phoon YP, Cheung AK, Cheung FM, Chan KF, Wong S, Wong BW, et al. IKBB tumor suppressive role in nasopharyngeal carcinoma via NF-κB-mediated signalling. Int J Cancer. 2016;138:160–70.

    Article  CAS  PubMed  Google Scholar 

  43. Albensi BC. What is Nuclear Factor Kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol. 2019;7:154.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo J, Verma UN, Gaynor RB, Frenkel EP, Becerra CR. Enhanced chemosensitivity to irinotecan by RNA interference-mediated down-regulation of the nuclear factor-kappaB p65 subunit. Clin Cancer Res. 2004;10:3333–41.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou G, Zhai Y, Cui Y, Qiu W, Yang H, Zhang X, et al. Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma. Hum Mutat. 2007;28:1091–7.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Shi G, Gao F, Liu P, Wang H, Tan X. TSPAN1 upregulates MMP2 to promote pancreatic cancer cell migration and invasion via PLCγ. Oncol Rep. 2019;41:2117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, D’Alessandro A, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 2019;9:910–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer. 2021;1876:188569.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 82073220, No. 81872384 and No. 81672872 to CQ, and No. 81972785, No. 81773162 and No. 81572901 to BH, No. 81872085 to YC), the Shandong Provincial Natural Science Foundation of China (No. ZR2021QH208 to DM), Basic and Applied Basic Research Project of Guangzhou Basic Research Program (No. 2023A04J2144 to MW).

Author information

Authors and Affiliations

Authors

Contributions

MW, YC and CQ designed the project and wrote the paper. MW, HL and LP performed all the experiments. YM and LZ analyzed the GEPIA data. MM, LG and DX performed the in vivo experiments and data analysis. CL, ZL and LD provided advice on discussions. DM, YL, LX and XP supplied RNA from human cancer specimens and collected clinical follow-up data. BH contributed with discussions and advice.

Corresponding authors

Correspondence to Yun Cao or Chao-Nan Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MD., Li, HT., Peng, LX. et al. TSPAN1 inhibits metastasis of nasopharyngeal carcinoma via suppressing NF-kB signaling. Cancer Gene Ther 31, 454–463 (2024). https://doi.org/10.1038/s41417-023-00716-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00716-w

Search

Quick links