Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IGH repertoire analysis at scale: deciphering the complexity of B cell infiltration and migration in esophageal squamous cell carcinoma

Abstract

Tumor-infiltrating B-lineage cells have become predictors of prognosis and immunotherapy responses in various cancers. However, limited knowledge about their infiltration and migration patterns has hindered the understanding of their anti-tumor functions. Here, we examined the immunoglobulin heavy chain (IGH) repertoires in 496 multi-regional tumor, 107 normal tissue, and 48 metastatic lymph node samples obtained from 107 patients with esophageal squamous cell carcinoma (ESCC). Our study revealed higher IgG-type B-lineage cells infiltration in tumors than in healthy tissue, which was associated with improved patient outcomes. Genes such as ACTN1, COL6A5, and pathways like focal adhesion, which shapes the physical structure of tumors, could affect B-lineage cell infiltration. Notably, the IGH sequence was used as an identity-tag to monitor B cell migration, and their infiltration schema within the tumor were depicted based on our multi-regional tumor specimens. This analysis revealed an escalation in B cell clones overlapped between metastatic lymph nodes and tumors. Therefore, the Lymph Node Activation Index was defined, which could predict the outcomes of patients with lymph node metastasis. This research introduces a novel framework for probing B cell infiltration and migration within the tumor microenvironment using large-scale transcriptome data, while simultaneously providing fresh perspectives on B cell immunology within ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissecting the composition of the IGH repertoire in the ESCC TME.
Fig. 2: Biased IGHV and IGHJ gene usage in the ESCC TME.
Fig. 3: High levels of B cell infiltration and IGH sequence richness are associated with better outcomes for ESCC patients.
Fig. 4: Tumor specific Genes and pathways correlated with IGHG1 richness in the ESCC TME.
Fig. 5: The similarity and heterogeneity of IGH repertoire across different tumor regions and tissues in ESCC patients.
Fig. 6: The mutation of IGH sequence in relation to the germline indicates the migration of B cells with tumor.
Fig. 7: The activation of B cells targeting metastatic tumors is linked to the prognosis of ESCC patients.

Similar content being viewed by others

Data availability

The IGH repertoire data derived from the multi-regional transcriptomic data used in this study have been submitted as supplementary materials to the article. Raw data can be obtained from the from the National Genomics Data Center (NGDC) with the project identifier “HRA005046” at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA005046. The validation transcriptomic raw data were obtained from our previously published ESCC cohort, which consisted of 155 paired tumor and normal samples. Detailed information and access to the data can be obtained from the National Genomics Data Center (NGDC) with the project identifier “HRA003107” at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003107.

References

  1. Wouters MCA, Nelson BH. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin Cancer Res. 2018;24:6125–35.

    Article  PubMed  CAS  Google Scholar 

  2. Fridman WH, Petitprez F, Meylan M, Chen TWW, Sun CM, Roumenina LT, et al. B cells and cancer: To B or not to B? J Exp Med. 2021;218:e20200851.

    Article  PubMed  CAS  Google Scholar 

  3. Petitprez F, de Reyniès A, Keung EZ, Chen TWW, Sun CM, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020;577:556–60.

    Article  PubMed  CAS  Google Scholar 

  4. Vanhersecke L, Brunet M, Guégan JP, Rey C, Bougouin A, Cousin S, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat Cancer. 2021;2:794–802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020;577:561–5.

    Article  PubMed  CAS  Google Scholar 

  6. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020;577:549–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ling Y, Zhong J, Weng Z, Lin G, Liu C, Pan C, et al. The prognostic value and molecular properties of tertiary lymphoid structures in oesophageal squamous cell carcinoma. Clin Transl Med. 2022;12:e1074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li R, Huang X, Yang W, Wang J, Liang Y, Zhang T, et al. Tertiary lymphoid structures favor outcome in resected esophageal squamous cell carcinoma. J Pathol Clin Res. 2022;8:422–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yao C, Yu H, Zhou G, Xu J, Gu D, Yin L, et al. Tumor-infiltrating plasma cells are the promising prognosis marker for esophageal squamous cell carcinoma. Esophagus. 2021;18:574–84.

    Article  PubMed  Google Scholar 

  10. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27:212–24.

    Article  PubMed  CAS  Google Scholar 

  11. Yan T, Cui H, Zhou Y, Yang B, Kong P, Zhang Y, et al. Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma. Nat Commun. 2019;10:1670.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dinh HQ, Pan F, Wang G, Huang QF, Olingy CE, Wu ZY, et al. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. Nat Commun. 2021;12:7335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang X. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun. 2021;12:5291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nat Commun. 2020;11:6268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jia Y, Zhang B, Zhang C, Kwong DL, Chang Z, Li S, et al. Single‐cell transcriptomic analysis of primary and metastatic tumor ecosystems in esophageal squamous cell carcinoma. Adv Sci 2023;10:2204565.

    Article  CAS  Google Scholar 

  16. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol. 2000;18:495–527.

    Article  PubMed  CAS  Google Scholar 

  17. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102:553–63.

    Article  PubMed  CAS  Google Scholar 

  18. Gupta NT, Vander Heiden JA, Uduman M, Gadala-Maria D, Yaari G, Kleinstein SH. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 2015;31:3356–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang Z, Cheng Z, Lu S, Chard Dunmall LS, Wang J, Guo Y, et al. Characterization of the intra-tumoral B cell immunoglobulin repertoire is of prognostic value for esophageal squamous cell carcinoma. Front Immunol. 2022;13:896627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang C, Huang H, Miao Y, Xiong H, Lu Z. Clonal distribution and intratumour heterogeneity of the B-cell repertoire in oesophageal squamous cell carcinoma. J Pathol. 2018;246:323–30.

    Article  PubMed  CAS  Google Scholar 

  21. Song Y, Yan S, Fan W, Zhang M, Liu W, Lu H, et al. Identification and validation of the immune subtypes of lung adenocarcinoma: implications for immunotherapy. Front Cell Dev Biol. 2020;8:550.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung MW, Parsons JM, et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun. 2013;4:2680.

    Article  PubMed  Google Scholar 

  23. Zhang W, Feng Q, Wang C, Zeng X, Du Y, Lin L, et al. Characterization of the B Cell Receptor Repertoire in the Intestinal Mucosa and of Tumor-Infiltrating Lymphocytes in Colorectal Adenoma and Carcinoma. J Immunol. 2017;198:3719–28.

    Article  PubMed  CAS  Google Scholar 

  24. Hao D, Han G, Sinjab A, Gomez-Bolanos LI, Lazcano R, Serrano A, et al. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov. 2022;12:2626–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hu Q, Hong Y, Qi P, Lu G, Mai X, Xu S, et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun. 2021;12:2186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380–1.

    Article  PubMed  CAS  Google Scholar 

  27. Song L, Cohen D, Ouyang Z, Cao Y, Hu X, Liu XS. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat Methods. 2021;18:627–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Benítez R, Yu K, Sirota M, Malats N, Pineda S. Characterization of the tumor-infiltrating immune repertoire in muscle invasive bladder cancer. Front Immunol. 2023;14:986598.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Song L, Ouyang Z, Cohen D, Cao Y, Altreuter J, Bai G, et al. Comprehensive characterizations of immune receptor repertoire in tumors and cancer immunotherapy studies. Cancer Immunol Res. 2022;10:788–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Andreani T, Slot LM, Gabillard S, Strübing C, Reimertz C, Yaligara V, et al. Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data. NAR Genom Bioinform. 2022;4:lqac049.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

    Article  PubMed  CAS  Google Scholar 

  33. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9.

    Article  PubMed  CAS  Google Scholar 

  34. Yaari G, Vander Heiden JA, Uduman M, Gadala-Maria D, Gupta N, Stern JNH, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013;4:358.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SH. Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proc Natl Acad Sci USA. 2019;116:22664–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Csardi, G, Nepusz, T. The igraph software package for complex network research. InterJournal. 2006;Complex Systems:1695.

  37. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Petitprez F, Vano YA, Becht E, Giraldo NA, de Reyniès A, Sautès-Fridman C, et al. Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother. 2018;67:981–8.

    Article  PubMed  Google Scholar 

  40. Li Y, Xu F, Chen F, Chen Y, Ge D, Zhang S, et al. Transcriptomics based multi-dimensional characterization and drug screen in esophageal squamous cell carcinoma. EBioMedicine 2021;70:103510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Patil NS, Nabet BY, Müller S, Koeppen H, Zou W, Giltnane J, et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell. 2022;40:289–300.

    Article  PubMed  CAS  Google Scholar 

  43. Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A, et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 2022;55:527–541.

    Article  PubMed  CAS  Google Scholar 

  44. Laumont CM, Nelson BH. B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell. 2023;41:466–89.

    Article  PubMed  CAS  Google Scholar 

  45. Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer. 2022;22:414–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cipponi A, Mercier M, Seremet T, Baurain JF, Théate I, van den Oord J, et al. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 2012;72:3997–4007.

    Article  PubMed  CAS  Google Scholar 

  47. Pimenta EM, Barnes BJ. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers. Cancers. 2014;6:969–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Pavoni E, Monteriù G, Santapaola D, Petronzelli F, Anastasi AM, Pelliccia A, et al. Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells. BMC Biotechnol. 2007;7:70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185:4977–82.

    Article  PubMed  CAS  Google Scholar 

  50. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–39.

    Article  PubMed  CAS  Google Scholar 

  51. Macpherson AJ, Geuking MB, McCoy KD. Immunoglobulin A: a bridge between innate and adaptive immunity. Curr Opin Gastroenterol. 2011;27:529–33.

    Article  PubMed  CAS  Google Scholar 

  52. Galligan L, Catherwood MA, Matthews C, Morris TCM. “Curly”, Alexander HD. Mutated IgHV1-69 gene usage represents a distinct subgroup associated with indolent disease in chronic lymphocytic leukemia. Leuk Lymphoma. 2008;49:763–8.

    Article  PubMed  CAS  Google Scholar 

  53. Kienle D, Benner A, Kröber A, Winkler D, Mertens D, Bühler A, et al. Distinct gene expression patterns in chronic lymphocytic leukemia defined by usage of specific VH genes. Blood 2006;107:2090–3.

    Article  PubMed  CAS  Google Scholar 

  54. Marasca R, Vaccari P, Luppi M, Zucchini P, Castelli I, Barozzi P, et al. Immunoglobulin gene mutations and frequent use of VH1-69 and VH4-34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol. 2001;159:253–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xiang H, Zhao Y, Li X, Liu P, Wang L, Wang M, et al. Landscapes and dynamic diversifications of B-cell receptor repertoires in COVID-19 patients. Hum Immunol. 2022;83:119–29.

    Article  PubMed  CAS  Google Scholar 

  56. Lai M, Wang Q, Lu Y, Xu X, Xia Y, Tu M, et al. Signatures of B-cell receptor diversity in B lymphocytes following Epstein-Barr virus transformation. Physiol Genom. 2019;51:197–207.

    Article  CAS  Google Scholar 

  57. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells, and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20:294–307.

    Article  PubMed  CAS  Google Scholar 

  59. Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, et al. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods. 2005;306:151–60.

    Article  PubMed  CAS  Google Scholar 

  60. Song L, Ouyang Z, Cohen D, Cao Y, Altreuter J, Bai G, et al. Comprehensive characterizations of immune receptor repertoire in tumors and cancer immunotherapy studies. Cancer Immunol Res. 2022;10:788–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li J, Wang X, Zheng K, Liu Y, Li J, Wang S, et al. The clinical significance of collagen family gene expression in esophageal squamous cell carcinoma. PeerJ 2019;7:e7705.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang SN, Li GS, Zhou XG, Chen XY, Yao YX, Zhang XG, et al. Identification of an Immune Score-Based Gene Panel with Prognostic Power for Oral Squamous Cell Carcinoma. Med Sci Monit. 2020;26:e922854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wu F, Du Y, Hou X, Cheng W. A prognostic model for oral squamous cell carcinoma using 7 genes related to tumor mutational burden. BMC Oral Health. 2022;22:152.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. J Cell Biol. 2013;200:9–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Otey CA, Vasquez GB, Burridge K, Erickson BW. Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain. J Biol Chem. 1993;268:21193–7.

    Article  PubMed  CAS  Google Scholar 

  66. Knudsen KA, Soler AP, Johnson KR, Wheelock MJ. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol. 1995;130:67–77.

    Article  PubMed  CAS  Google Scholar 

  67. Johan MZ, Samuel MS. Rho-ROCK signaling regulates tumor-microenvironment interactions. Biochem Soc Trans. 2019;47:101–8.

    Article  PubMed  CAS  Google Scholar 

  68. Cui S, McGranahan N, Gao J, Chen P, Jiang W, Yang L, et al. Tracking the evolution of esophageal squamous cell carcinoma under dynamic immune selection by multi-omics sequencing. Nat Commun. 2023;14:892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat Med. 2019;25:1488–99.

    Article  PubMed  CAS  Google Scholar 

  70. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019;567:479–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996;381:751–8.

    Article  PubMed  CAS  Google Scholar 

  72. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.

    Article  PubMed  Google Scholar 

  73. Petrick JL, Wyss AB, Butler AM, Cummings C, Sun X, Poole C, et al. Prevalence of human papillomavirus among oesophageal squamous cell carcinoma cases: systematic review and meta-analysis. Br J Cancer. 2014;110:2369–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Baba Y, Iwatsuki M, Yoshida N, Watanabe M, Baba H. Review of the gut microbiome and esophageal cancer: pathogenesis and potential clinical implications. Ann Gastroenterol Surg. 2017;1:99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Slack E, Balmer ML, Fritz JH, Hapfelmeier S. Functional flexibility of intestinal IgA—broadening the fine line. Front Immunol. 2012;3:100.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C, Dorgham K, et al. Human IgA binds a diverse array of commensal bacteria. J Exp Med. 2020;217:e20181635.

    Article  PubMed  Google Scholar 

  78. Pavoni E, Flego M, Dupuis ML, Barca S, Petronzelli F, Anastasi AM, et al. Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein. BMC Cancer. 2006;6:41.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Katoh H, Komura D, Konishi H, Suzuki R, Yamamoto A, Kakiuchi M, et al. Immunogenetic profiling for gastric cancers identifies sulfated glycosaminoglycans as major and functional B cell antigens in human malignancies. Cell Rep. 2017;20:1073–87.

    Article  PubMed  CAS  Google Scholar 

  80. Ganesh K, Massagué J. Targeting metastatic cancer. Nat Med. 2021;27:34–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds of the Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the National Key R&D Program of China (2021YFC2501001, 2022YFC3401002), Major Program of Shenzhen Bay Laboratory (S201101004), China Postdoctoral Science Foundation (2021M692160), Shenzhen Key Project of Science and Technology (JCYJ20200109120425045), Shenzhen Bay Laboratory Open Program (SZBL2020090501003), the National Natural Science Foundation of China (82341024, U21A20372, 81972613, 82172930, 82202990), and Shenzhen Science and Technology Innovation Commission Project (ZDSYS20190902092855097, KCXFZ20200201101050887, GJHZ20200731095207023). Many thanks to Shenzhen Bay Laboratory Supercomputing Center for providing the computing platform.

Author information

Authors and Affiliations

Authors

Contributions

WMZ and YPC conceived and supervised the entire work. LLW conceived the study, performed the bioinformatics analyses, developed the methods, and wrote the manuscript. YZ, HYC, XHZ, CC, and YJW assisted the analysis. HJL, YJW, and HYC provided clinical records and related details of all patients. WMZ, XHP, YPC, and SBW contributed to critical revision of the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xinghua Pan, Yongping Cui or Weimin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the Institutional Review Boards of Shanxi Medical University and Shanxi Cancer Hospital (Shanxi, China). Informed consent was obtained from all the participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, Y., Cui, H. et al. IGH repertoire analysis at scale: deciphering the complexity of B cell infiltration and migration in esophageal squamous cell carcinoma. Cancer Gene Ther 31, 131–147 (2024). https://doi.org/10.1038/s41417-023-00689-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00689-w

Search

Quick links