Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Stromal localization of inactive CD8+ T cells in metastatic mismatch repair deficient colorectal cancer

Abstract

Background

The determinants of metastasis in mismatch repair deficiency with high levels of microsatellite instability (MSI-H) in colorectal cancer (CRC) are poorly understood. Here, we hypothesized that distinct immune and stromal microenvironments in primary tumors may discriminate between non-metastatic MSI-H CRC and metastatic MSI-H CRC.

Methods

We profiled 46,727 single cells using high-plex imaging mass cytometry and analyzed both differential cell type abundance, and spatial distribution of fibroblasts and immune cells in primary CRC tumors with or without metastatic capacity. We validated our findings in a second independent cohort using immunohistochemistry.

Results

High-plex imaging mass cytometry and hierarchical clustering based on microenvironmental markers separated primary MSI-H CRC tumors with and without metastatic capacity. Primary tumors with metastatic capacity displayed a high stromal content and low influx of CD8+ T cells, which expressed significantly lower levels of markers reflecting proliferation (Ki67) and antigen-experience (CD45RO) compared to CD8+ T cells in non-metastatic tumors. CD8+ T cells showed intra-epithelial localization in non-metastatic tumors, but stromal localization in metastatic tumors, which was validated in a second cohort.

Conclusion

We conclude that localization of phenotypically distinct CD8+ T cells within stroma may predict metastasis formation in MSI-H CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TME markers distinguish non-metastatic from metastatic colorectal tumors.
Fig. 2: Cell-type annotation reveals differential microenvironment composition between metastatic and non-metastatic primary CRC tumors.
Fig. 3: Metastatic MSI-H tumors lack proliferating antigen-experienced CD8+ T cells.
Fig. 4: Spatial analysis reveals distinct localization of cell-types in the tumor microenvironment.
Fig. 5: Cytotoxic T cells reside in high stromal content in metastatic MSI-H tumors.

Similar content being viewed by others

Data availability

All data are publicly available in Zenodo repository (https://doi.org/10.5281/zenodo.8341225).

Code availability

All code are available in Github (https://github.com/VercoulenLab).

References

  1. Taieb J, Svrcek M, Cohen R, Basile D, Tougeron D, Phelip J-M. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur J Cancer. 2022;175:136–57.

    Article  CAS  PubMed  Google Scholar 

  2. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  3. Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20:662–80.

    Article  CAS  PubMed  Google Scholar 

  4. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609–18.

    Article  CAS  PubMed  Google Scholar 

  5. Kim CG, Ahn JB, Jung M, Beom SH, Kim C, Kim JH, et al. Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. Br J Cancer. 2016;115:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117:4623–32.

    Article  CAS  PubMed  Google Scholar 

  7. Wensink GE, Elferink MAG, May AM, Mol L, Hamers PAH, Bakker SD, et al. Survival of patients with deficient mismatch repair metastatic colorectal cancer in the pre-immunotherapy era. Br J Cancer. 2021;124:399–406.

    Article  CAS  PubMed  Google Scholar 

  8. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell. 2019;177:1035–49.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52:594–603.

    Article  CAS  PubMed  Google Scholar 

  12. Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet. 2022;54:963–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39.

    Article  PubMed  Google Scholar 

  14. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 2017;14:235–46.

    Article  CAS  PubMed  Google Scholar 

  15. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–85.

    Article  CAS  PubMed  Google Scholar 

  16. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kucukkose E, Wensink GE, Roelse CM, van Schelven SJ, Raats DAE, Boj SF, et al. Mismatch repair status in patient-derived colorectal cancer organoids does not affect intrinsic tumor cell sensitivity to systemic therapy. Cancers. 2021;13:5434.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  19. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43–51.

    Article  CAS  PubMed  Google Scholar 

  20. Khaliq AM, Erdogan C, Kurt Z, Turgut SS, Grunvald MW, Rand T, et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 2022;23:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pelka K, Hofree M, Chen JH, Sarkizova S, Pirl JD, Jorgji V, et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell. 2021;184:4734–52.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin A, Zhang J, Luo P. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer. Front Immunol. 2020;11:2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A, et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet. 2015;47:312–9.

    Article  CAS  PubMed  Google Scholar 

  24. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–9.

    Article  CAS  PubMed  Google Scholar 

  25. Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383:2207–18.

    Article  CAS  PubMed  Google Scholar 

  26. Baars MJD, Sinha N, Amini M, Pieterman-Bos A, van Dam S, Ganpat MMP, et al. MATISSE: a method for improved single cell segmentation in imaging mass cytometry. BMC Biol. 2021;19:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019;16:1226–32.

    Article  CAS  PubMed  Google Scholar 

  28. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krijgsman D, Sinha N, Baars MJD, van Dam S, Amini M, Vercoulen Y. MATISSE: an analysis protocol for combining imaging mass cytometry with fluorescence microscopy to generate single-cell data. STAR Protoc. 2022;3:101034.

    Article  CAS  PubMed  Google Scholar 

  30. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell. 2015;162:184–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schraa SJ, Stelloo E, Laclé MM, Swennenhuis JF, Brosens LAA, Fijneman RJA, et al. Comparison of NTRK fusion detection methods in microsatellite-instability-high metastatic colorectal cancer. Virchows Arch. 2023;482:983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seppälä TT, Böhm JP, Friman M, Lahtinen L, Väyrynen VM, Liipo TK, et al. Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer. 2015;112:1966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bindea G, Mlecnik B, Galon J. Immune sunrise: from the immunome to the cancer immune landscape. Oncoimmunology. 2022;11:2019896.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Egelston CA, Avalos C, Tu TY, Rosario A, Wang R, Solomon S, et al. Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients. JCI Insight. 2019;4:e130000.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Dam S, Baars MJD, Vercoulen Y. Multiplex tissue imaging: spatial revelations in the tumor microenvironment. Cancers. 2022;14:3170.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9:4692.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grout JA, Sirven P, Leader AM, Maskey S, Hector E, Puisieux I, et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T cell exclusion in human lung tumors. Cancer Discov. 2022;12:2606–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49:708–18.

    Article  CAS  PubMed  Google Scholar 

  41. Strating E, Wassenaar E, Verhagen M, Rauwerdink P, van Schelven S, de Hingh I, et al. Fibroblast activation protein identifies Consensus Molecular Subtype 4 in colorectal cancer and allows its detection by (68)Ga-FAPI-PET imaging. Br J Cancer. 2022;127:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 2019;381:1632–43.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Chen H, Bao H, Zhang J, Wu R, Zhu L. Comprehensive characterization of FBXW7 mutational and clinicopathological profiles in human colorectal cancers. Front Oncol. 2023;13:1154432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9.

    Article  CAS  PubMed  Google Scholar 

  45. Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022;23:659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cervantes A, Adam R, Roselló S, Arnold D, Normanno N, Taïeb J, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up(†). Ann Oncol. 2022;34:10–32.

    Article  PubMed  Google Scholar 

  47. Chalabi M, Fanchi LF, Dijkstra KK, Van den Berg JG, Aalbers AG, Sikorska K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med. 2020;26:566–76.

    Article  CAS  PubMed  Google Scholar 

  48. Simkens LH, van Tinteren H, May A, ten Tije AJ, Creemers GJ, Loosveld OJ, et al. Maintenance treatment with capecitabine and bevacizumab in metastatic colorectal cancer (CAIRO3): a phase 3 randomised controlled trial of the Dutch Colorectal Cancer Group. Lancet. 2015;385:1843–52.

    Article  CAS  PubMed  Google Scholar 

  49. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pebesma E. Simple features for R: standardized support for spatial vector data. R J. 2018;10:439–46.

    Article  Google Scholar 

  51. de Leng WW, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, Koudijs MJ, Nijman I, Hinrichs JW, et al. Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLoS One. 2016;11:e0149405.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all patients involved in the current study.

Funding

This work was supported by the Dutch Cancer Society (KWF/Alpe d’HuZes #UU-10660), and the Dutch Scientific Organization (cancergenomicscenter.nl, NWO Gravitation 024.001.028). Funders had no role in study design, data acquisition, analysis, and interpretation.

Author information

Authors and Affiliations

Authors

Contributions

Study design: EK, MJDB, OK, YV. Experimental work: EK, MJDB, MA, EF. Resources: SS, GB, JMLR, MK. Data interpretation: EK, MJDB, IHMBR, JL, OK, YV. Study supervision: OK, YV. Writing manuscript: EK, MJDB, OK, YV.

Corresponding authors

Correspondence to Onno Kranenburg or Yvonne Vercoulen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küçükköse, E., Baars, M.J.D., Amini, M. et al. Stromal localization of inactive CD8+ T cells in metastatic mismatch repair deficient colorectal cancer. Br J Cancer 130, 213–223 (2024). https://doi.org/10.1038/s41416-023-02500-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02500-x

Search

Quick links