Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical Studies

Artificial intelligence: opportunities and challenges in the clinical applications of triple-negative breast cancer

Subjects

Abstract

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancer subtypes. Owing to its clinical characteristics, such as the lack of effective therapeutic targets, high invasiveness, and high recurrence rate, TNBC is difficult to treat and has a poor prognosis. Currently, with the accumulation of large amounts of medical data and the development of computing technology, artificial intelligence (AI), particularly machine learning, has been applied to various aspects of TNBC research, including early screening, diagnosis, identification of molecular subtypes, personalised treatment, and prediction of prognosis and treatment response. In this review, we discussed the general principles of artificial intelligence, summarised its main applications in the diagnosis and treatment of TNBC, and provided new ideas and theoretical basis for the clinical diagnosis and treatment of TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Branches of artificial intelligence technology and the relationship between AI and ML and DL, with examples of commonly used algorithms.
Fig. 2: A framework of AI in TNBC.
Fig. 3: A patterned pipeline for TNBC subtyping.

Similar content being viewed by others

References

  1. Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? Am J Med. 2018;131:129–33.

    Article  PubMed  Google Scholar 

  2. Haller S, Lovblad KO, Giannakopoulos P, Van De Ville D. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends. Brain Topogr. 2014;27:329–37.

    Article  PubMed  Google Scholar 

  3. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu WT, Li YJ, Feng AZ, Li L, Huang T, Xu AD, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil Med Res. 2021;8:44.

    PubMed  PubMed Central  Google Scholar 

  5. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021;41:1100–15.

    Article  Google Scholar 

  6. Séroussi B, Guézennec G, Lamy JB, Muro N, Larburu N, Sekar BD, et al. Reconciliation of multiple guidelines for decision support: a case study on the multidisciplinary management of breast cancer within the DESIREE project. AMIA Annu Symp Proc. 2018;2017:1527–36.

    PubMed  PubMed Central  Google Scholar 

  7. Redjdal A, Bouaud J, Guézennec G, Gligorov J, Seroussi B. Reusing decisions made with one decision support system to assess a second decision support system: introducing the notion of complex cases. Stud Health Technol Inf. 2021;281:649–53.

    Google Scholar 

  8. Pelayo S, Bouaud J, Blancafort C, Lamy JB, Sekar BD, Larburu N, et al. Preliminary qualitative and quantitative evaluation of DESIREE, a decision support platform for the management of primary breast cancer patients. AMIA Annu Symp Proc. 2021;2020:1012–21.

    PubMed  PubMed Central  Google Scholar 

  9. Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers. 2020;12:916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Talari ACS, Rehman S, Rehman IU. Advancing cancer diagnostics with artificial intelligence and spectroscopy: identifying chemical changes associated with breast cancer. Expert Rev Mol Diagn. 2019;19:929–40.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35:428–440.e5.

    Article  CAS  PubMed  Google Scholar 

  12. Castaldo R, Pane K, Nicolai E, Salvatore M, Franzese M. The impact of normalization approaches to automatically detect radiogenomic phenotypes characterizing breast cancer receptors status. Cancers. 2020;12:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Porembka JH, Ma J, Le-Petross HT. Breast density, MR imaging biomarkers, and breast cancer risk. Breast J. 2020;26:1535–42.

    Article  PubMed  Google Scholar 

  14. Li H, Ye J, Liu H, Wang Y, Shi B, Chen J, et al. Application of deep learning in the detection of breast lesions with four different breast densities. Cancer Med. 2021;10:4994–5000.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma M, Liu R, Wen C, Xu W, Xu Z, Wang S, et al. Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms. Eur Radiol. 2022;32:1652–62.

    Article  CAS  PubMed  Google Scholar 

  16. Leithner D, Mayerhoefer ME, Martinez DF, Jochelson MS, Morris EA, Thakur SB, et al. Non-invasive assessment of breast cancer molecular subtypes with multiparametric magnetic resonance imaging radiomics. J Clin Med. 2020;9:1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang Y, Wei L, Hu Y, Shao N, Lin Y, He S, et al. Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer. Front Oncol. 2021;11:706733.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu T, Sultan LR, Tian J, Cary TW, Sehgal CM. Machine learning for diagnostic ultrasound of triple-negative breast cancer. Breast Cancer Res Treat. 2019;173:365–73.

    Article  CAS  PubMed  Google Scholar 

  19. Alafeef M, Srivastava I, Pan D. Machine learning for precision breast cancer diagnosis and prediction of the nanoparticle cellular internalization. ACS Sens. 2020;5:1689–98.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao S, Zuo WJ, Shao ZM, Jiang YZ. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann Transl Med. 2020;8:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ensenyat-Mendez M, Llinàs-Arias P, Orozco JIJ, Íñiguez-Muñoz S, Salomon MP, Sesé B, et al. Current triple-negative breast cancer subtypes: dissecting the most aggressive form of breast cancer. Front Oncol. 2021;11:681476.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yu X, Liu Y, Chen M. Reassessment of reliability and reproducibility for triple-negative breast cancer subtyping. Cancers. 2022;14:2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bissanum R, Chaichulee S, Kamolphiwong R, Navakanitworakul R, Kanokwiroon K. Molecular classification models for triple negative breast cancer subtype using machine learning. J Pers Med. 2021;11:881.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.

    Article  CAS  PubMed  Google Scholar 

  25. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res. 2018;37:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Z, Wang M, De Wilde RL, Feng R, Su M, Torres-de la Roche LA, et al. A machine learning model to predict the triple negative breast cancer immune subtype. Front Immunol. 2021;12:749459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Feng R, Chen Z, Shi W, Li C, Liu H, et al. Identification of cancer-associated fibroblast subtype of triple-negative breast cancer. J Oncol. 2022;2022:6452636.

    PubMed  PubMed Central  Google Scholar 

  28. Jézéquel P, Kerdraon O, Hondermarck H, Guérin-Charbonnel C, Lasla H, Gouraud W, et al. Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications. Breast Cancer Res. 2019;21:65–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ben Azzouz F, Michel B, Lasla H, Gouraud W, François AF, Girka F, et al. Development of an absolute assignment predictor for triple-negative breast cancer subtyping using machine learning approaches. Comput Biol Med. 2021;129:104171.

    Article  PubMed  Google Scholar 

  30. Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination therapy and nanoparticulate systems: smart approaches for the effective treatment of breast cancer. Pharmaceutics. 2020;12:524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsou LK, Yeh SH, Ueng SH, Chang CP, Song JS, Wu MH, et al. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci Rep. 2020;10:16771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 2019;38:430.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Almansour NM. Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci. 2022;9:836417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cocco S, Piezzo M, Calabrese A, Cianniello D, Caputo R, Lauro VD, et al. Biomarkers in triple-negative breast cancer: state-of-the-art and future perspectives. Int J Mol Sci. 2020;21:4579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Won KA, Spruck C. Triple-negative breast cancer therapy: current and future perspectives (Review). Int J Oncol. 2020;57:1245–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smolarz B, Nowak AZ, Romanowicz H. Breast cancer-epidemiology, classification, pathogenesis and treatment (review of literature). Cancers. 2022;14:2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gautam P, Jaiswal A, Aittokallio T, Al-Ali H, Wennerberg K. Phenotypic screening combined with machine learning for efficient identification of breast cancer-selective therapeutic targets. Cell Chem Biol. 2019;26:970.e4–9.e4.

    Article  Google Scholar 

  38. Kothari C, Osseni MA, Agbo L, Ouellette G, Déraspe M, Laviolette F, et al. Machine learning analysis identifies genes differentiating triple negative breast cancers. Sci Rep. 2020;10:10464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turki T, Wang JTL. Clinical intelligence: new machine learning techniques for predicting clinical drug response. Comput Biol Med. 2019;107:302–22.

    Article  PubMed  Google Scholar 

  40. Dodington DW, Lagree A, Tabbarah S, Mohebpour M, Sadeghi-Naini A, Tran WT, et al. Analysis of tumor nuclear features using artificial intelligence to predict response to neoadjuvant chemotherapy in high-risk breast cancer patients. Breast Cancer Res Treat. 2021;186:379–89.

    Article  CAS  PubMed  Google Scholar 

  41. Irajizad E, Wu R, Vykoukal J, Murage E, Spencer R, Dennison JB, et al. Application of artificial intelligence to plasma metabolomics profiles to predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Front Artif Intell. 2022;5:876100.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim J, Yu D, Kwon Y, Lee KS, Sim SH, Kong SY, et al. Genomic characteristics of triple-negative breast cancer nominate molecular subtypes that predict chemotherapy response. Mol Cancer Res. 2020;18:253–63.

    Article  CAS  PubMed  Google Scholar 

  43. Tsopra R, Fernandez X, Luchinat C, Alberghina L, Lehrach H, Vanoni M, et al. A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Med Inf Decis Mak. 2021;21:274.

    Article  Google Scholar 

  44. Blackley EF, Loi S. Targeting immune pathways in breast cancer: review of the prognostic utility of TILs in early stage triple negative breast cancer (TNBC). Breast. 2019;48:S44–S48.

    Article  PubMed  Google Scholar 

  45. Polley MC, Leon-Ferre RA, Leung S, Cheng A, Gao D, Sinnwell J, et al. A clinical calculator to predict disease outcomes in women with triple-negative breast cancer. Breast Cancer Res Treat. 2021;185:557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sabit H, Cevik E, Tombuloglu H, Abdel-Ghany S, Tombuloglu G, Esteller M. Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol. 2021;157:103196.

    Article  PubMed  Google Scholar 

  47. Dadiani M, Necula D, Kahana-Edwin S, Oren N, Baram T, Marin I, et al. TNFR2+ TILs are significantly associated with improved survival in triple-negative breast cancer patients. Cancer Immunol Immunother. 2020;69:1315–26.

    Article  PubMed  Google Scholar 

  48. Balkenhol MC, Ciompi F, widerska-Chadaj Ż, van de Loo R, Intezar M, Otte-Höller I, et al. Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics. Breast. 2021;56:78–87.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Iwamoto T, Kajiwara Y, Zhu Y, Iha S. Biomarkers of neoadjuvant/adjuvant chemotherapy for breast cancer. Chin Clin Oncol. 2020;9:27.

    Article  PubMed  Google Scholar 

  50. Bai Y, Cole K, Martinez-Morilla S, Ahmed FS, Zugazagoitia J, Staaf J, et al. An open-source, automated tumor-infiltrating lymphocyte algorithm for prognosis in triple-negative breast cancer. Clin Cancer Res. 2021;27:5557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee KL, Chen G, Chen TY, Kuo YC, Su YK. Effects of cancer stem cells in triple-negative breast cancer and brain metastasis: challenges and solutions. Cancers. 2020;12:2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oliver CR, Altemus MA, Westerhof TM, Cheriyan H, Cheng X, Dziubinski M, et al. A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche. Lab Chip. 2019;19:1162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng X, Xia L, Sun S. A pre-operative MRI-based brain metastasis risk-prediction model for triple-negative breast cancer. Gland Surg. 2021;10:2715–23.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thalor A, Kumar Joon H, Singh G, Roy S, Gupta D. Machine learning assisted analysis of breast cancer gene expression profiles reveals novel potential prognostic biomarkers for triple-negative breast cancer. Comput Struct Biotechnol J. 2022;20:1618–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baranova A, Krasnoselskyi M, Starikov V, Kartashov S, Zhulkevych I, Vlasenko V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life. 2022;15:153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alsaleem MA, Ball G, Toss MS, Raafat S, Aleskandarany M, Joseph C, et al. A novel prognostic two-gene signature for triple negative breast cancer. Mod Pathol. 2020;33:2208–20.

    Article  CAS  PubMed  Google Scholar 

  57. Chen DL, Cai JH, Wang CCN. Identification of key prognostic genes of triple negative breast cancer by LASSO-based machine learning and bioinformatics analysis. Genes. 2022;13:902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Millar EK, Browne LH, Beretov J, Lee K, Lynch J, Swarbrick A, et al. Tumour stroma ratio assessment using digital image analysis predicts survival in triple negative and luminal breast cancer. Cancers. 2020;12:3749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balkenhol MCA, Bult P, Tellez D, Vreuls W, Clahsen PC, Ciompi F, et al. Deep learning and manual assessment show that the absolute mitotic count does not contain prognostic information in triple negative breast cancer. Cell Oncol. 2019;42:555–69.

    Article  Google Scholar 

  60. Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer therapeutic resistance: where is the Achilles’ heel? Cancer Lett. 2021;497:100–11.

    Article  CAS  PubMed  Google Scholar 

  61. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111:1452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021;11:900–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Key Research and Development Project of Sichuan Province (2023YFS0171 to JM).

Author information

Authors and Affiliations

Authors

Contributions

JM and SZ designed and prepared the manuscript. JG, JH, YZ and JM drafted the manuscript.

Corresponding authors

Correspondence to Shuang Zhao or Ji Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Hu, J., Zheng, Y. et al. Artificial intelligence: opportunities and challenges in the clinical applications of triple-negative breast cancer. Br J Cancer 128, 2141–2149 (2023). https://doi.org/10.1038/s41416-023-02215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02215-z

Search

Quick links