Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Translational Therapeutics

Support to early clinical decisions in drug development and personalised medicine with checkpoint inhibitors using dynamic biomarker-overall survival models

Abstract

Longitudinal models of biomarkers such as tumour size dynamics capture treatment efficacy and predict treatment outcome (overall survival) of a variety of anticancer therapies, including chemotherapies, targeted therapies, immunotherapies and their combinations. These pharmacological endpoints like tumour dynamic (tumour growth inhibition) metrics have been proposed as alternative endpoints to complement the classical RECIST endpoints (objective response rate, progression-free survival) to support early decisions both at the study level in drug development as well as at the patients level in personalised therapy with checkpoint inhibitors. This perspective paper presents recent developments and future directions to enable wider and robust use of model-based decision frameworks based on pharmacological endpoints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour dynamic link functions (orange) and RECIST endpoints (blue) to support clinical early decisions.
Fig. 2: Illustration of SLD kinetics and survival probability predictions in 1 individual.

Similar content being viewed by others

References

  1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. EuropeanOrganization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  2. Food and Drug Administration Oncologic Drugs Advisory Committee, April 27-29, 2021. https://www.fda.gov/advisory-committees/advisory-committee-calendar/april-27-29-2021-meeting-oncologic-drugs-advisory-committee-meeting-announcement-04272021-04292021#event-materials. Accessed October 27, 2022.

  3. Michaelis LC, Ratain MJ. Measuring response in a post-RECIST world: from black and white to shades of grey. Nat Rev Cancer. 2006;6:409–14.

    Article  CAS  PubMed  Google Scholar 

  4. Claret L, Girard P, O’Shaughnessy J, Hoff P, Van Cutsem E, Blum J, et al. Model-based predictions of expected anti-tumor response and survival in phase III studies based on phase II data of an investigational agent. J Clin Oncol. 2006;24:6025–6025.

    Article  Google Scholar 

  5. Gong Y, Mason J, Shen YL, Chang E, Kazandjian D, Blumenthal GM, et al. An FDA analysis of the association of tumor growth rate and overall and progression-free survival in metastatic non-small cell lung cancer (NSCLC) patients. J Clin Oncol. 2020;38:9541–9541.

    Article  Google Scholar 

  6. Maitland ML, Wilkerson J, Karovic S, Zhao B, Flynn J, Zhou M, et al. Enhanced detection of treatment effects on metastatic colorectal cancer with volumetric CT measurements for tumor burden growth rate evaluation. Clin Cancer Res. 2020;26:6464–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bruno R, Marchand M, Yoshida K, Chan P, Li H, Zhu W, et al. Tumor dynamic model-based decision support for Phase Ib/II combination studies: a retrospective assessment based on resampling of the Phase III study IMpower150. Clin Cancer Res. 2023; https://doi.org/10.1158/1078-0432.CCR-22-2323.

  8. Kerioui M, Desmée S, Mercier F, Lin A, Wu B, Jin JY, et al. Assessing the impact of organ-specific lesion dynamics on survival in patients with recurrent urothelial carcinoma treated with atezolizumab or chemotherapy. ESMO Open. 2022;7:100346.

    Article  CAS  PubMed  Google Scholar 

  9. Kerioui M, Desmée S, Bertrand J, Le Tourneau C, Mercier F, Bruno R, et al. Assessing the increased variability in individual lesion kinetics during immunotherapy: does it exist, and does it matter? J Clin Oncol Precision Oncol. in press.

  10. Wilkerson J, Abdallah K, Hugh-Jones C, Curt G, Rothenberg M, Simantov R, et al. Estimation of tumour regression and growth rates during treatment in patients with advanced prostate cancer: a retrospective analysis. Lancet Oncol. 2017;18:143–54.

    Article  PubMed  Google Scholar 

  11. Colomban O, Tod M, Leary A, Ray-Coquard I, Lortholary A, Hardy-Bessard AC, et al. Early modeled longitudinal CA-125 kinetics and survival of ovarian cancer patients: a GINECO AGO MRC CTU study. Clin Cancer Res. 2019;25:5342–50.

    Article  CAS  PubMed  Google Scholar 

  12. Jonsson F, Ou Y, Claret L, Siegel D, Jagannath S, Vij R, et al. A tumor growth inhibition model based on M-protein levels in subjects with relapsed/refractory multiple myeloma following single-agent carfilzomib use. CPT Pharmacomet Syst Pharm. 2015;4:711–9.

    Article  CAS  Google Scholar 

  13. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022;21:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bratman SV, Yang SYC, Lafolla MAJ, Liu Z, Hansen AR, Bedard PL, et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Cancer. 2020;1:873–81.

    Article  CAS  PubMed  Google Scholar 

  15. Weber S, van der Leest P, Donker HC, Schlange T, Timens W, Tamminga M, et al. Dynamic changes of circulating tumor DNA predict clinical outcome in patients with advanced non-small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis Oncol. 2021;5:1540–53.

    Article  PubMed  Google Scholar 

  16. Zou W, Yaung SJ, Fuhlbrück F, Ballinger M, Peters E, Palma JF, et al. ctDNA predicts overall survival in patients with NSCLC treated with PD-L1 blockade or with chemotherapy. JCO Precis Oncol. 2021;5:827–38.

    Article  PubMed  Google Scholar 

  17. Food and Drug Administration. Use of Circulating Tumor DNA for Early-Stage Solid Tumor Drug Development - Guidance for Industry 2022. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-circulating-tumor-deoxyribonucleic-acid-early-stage-solid-tumor-drug-development-draft-guidance. Accessed February 6, 2023.

  18. Yin A, van Hasselt JGC, Guchelaar HJ, Friberg LE, Moes DJAR. Anti-cancer treatment schedule optimization based on tumor dynamics modelling incorporating evolving resistance. Sci Rep. 2022;12:4206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Janssen JM, Verheijen RB, van Duijl TT, Lin L, van den Heuvel MM, Beijnen JH, et al. Longitudinal nonlinear mixed effects modeling of EGFR mutations in ctDNA as predictor of disease progression in treatment of EGFR-mutant non-small cell lung cancer. Clin Transl Sci. 2022;15:1916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Visal TH, den Hollander P, Cristofanilli M, Mani SA. Circulating tumour cells in the -omics era: how far are we from achieving the ‘singularity’? Br J Cancer. 2022;127:173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Netterberg I, Karlsson MO, Terstappen LWMM, Koopman M, Punt CJA, Friberg LE. Comparing circulating tumor cell counts with dynamic tumor size changes as predictor of overall survival: a quantitative modeling framework. Clin Cancer Res. 2020;26:4892–900.

    Article  PubMed  Google Scholar 

  22. Mathew M, Zade M, Mezghani N, Patel R, Wang Y, Momen-Heravi F. Extracellular vesicles as biomarkers in cancer immunotherapy. Cancers. 2020;12:2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin Y, Dong H, Deng W, Lin W, Li K, Xiong X, et al. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal carcinoma. Clin Cancer Res. 2019;25:3035–45.

    Article  CAS  PubMed  Google Scholar 

  24. Mezquita L, Preeshagul I, Auclin E, Saravia D, Hendriks L, Rizvi H, et al. Predicting immunotherapy outcomes under therapy in patients with advanced NSCLC using dNLR and its early dynamics. Eur J Cancer. 2021;151:211–20.

    Article  CAS  PubMed  Google Scholar 

  25. Gavrilov S, et al. Longitudinal tumor size and neutrophil-to-lymphocyte ratio are prognostic biomarkers for overall survival in patients with advanced non-small cell lung cancer treated with durvalumab. CPT Pharmacomet Syst Pharm. 2021;10:67–74.

    Article  CAS  Google Scholar 

  26. Benzekri S, Karlsen M, El Kaoutari A, Bruno R, Neubert A, Mercier F, et al. Supporting decision making and early prediction of survival for oncology drug development using a pharmacometrics-machine learning based model. Population Approach Group Europe (PAGE). 2022;Abstr 10276. www.page-meeting.org/?abstract=10276].

  27. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharm Ther. 1997;61:275–91.

    Article  CAS  Google Scholar 

  28. Bruno R, Mercier F, Claret L. Evaluation of tumor size response metrics to predict survival in oncology clinical trials. Clin Pharm Ther. 2014;95:386–93.

    Article  CAS  Google Scholar 

  29. Bruno R, Bottino D, de Alwis DP, Fojo AT, Guedj J, Liu C, et al. Progress and opportunities to advance clinical cancer therapeutics using tumor dynamic models. Clin Cancer Res. 2020;26:1787–95.

    Article  CAS  PubMed  Google Scholar 

  30. Kerioui M, Bertrand J, Bruno R, Mercier F, Guedj J, Desmée S. Modelling the association between biomarkers and clinical outcome: An introduction to nonlinear joint models. Br J Clin Pharm. 2022;88:1452–63.

    Article  Google Scholar 

  31. Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP, Jorga K, et al. Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol. 2009;27:4103–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ribba B, Holford NH, Magni P, Troconiz I, Gueorguieva I, Girard P, et al. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet Syst Pharm. 2014;3:e113.

    Article  CAS  Google Scholar 

  33. Lin RS, Lin J, Roychoudhury S, Anderson KM, Hu T, Huang B, et al. Alternative analysis methods for time to event endpoints under nonproportional hazards: a comparative analysis. Stat Biopharm Res. 2020;12:187–98.

    Article  Google Scholar 

  34. Claret L, Gupta M, Han K, Joshi A, Sarapa N, He J, et al. Evaluation of tumor size response metrics to predict overall survival in Western and Chinese patients with first-line metastatic colorectal cancer. J Clin Oncol. 2013;31:2110–4.

    Article  CAS  PubMed  Google Scholar 

  35. Claret L, Jin JY, Ferté C, Winter H, Girish S, Stroh M, et al. A model of overall survival predicts treatment outcomes with atezolizumab versus chemotherapy in non-small cell lung cancer based on early tumor kinetics. Clin Cancer Res. 2018;24:3292–98.

    Article  CAS  PubMed  Google Scholar 

  36. Chan P, Marchand M, Yoshida K, Vadhavkar S, Wang N, Lin A, et al. Prediction of overall survival in patients across solid tumors following atezolizumab treatments: a tumor growth inhibition-overall survival modeling framework. CPT Pharmacomet Syst Pharm. 2021;10:1171–82.

    Article  CAS  Google Scholar 

  37. Madabushi R, Seo P, Zhao L, Tegenge M, Zhu H. Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm Res. 2022;39:1669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galluppi GR, Brar S, Caro L, Chen Y, Frey N, Grimm HP, et al. Industrial perspective on the benefits realized from the FDA’s model-informed drug development paired meeting pilot program. Clin Pharm Ther. 2021;110:1172–75.

    Article  Google Scholar 

  39. Shah M, Rahman A, Theoret MR, Pazdur R. The drug-dosing conundrum in oncology—when less is more. N. Engl J Med. 2021;385:1445–47.

    Article  PubMed  Google Scholar 

  40. Chatelut E, Hendrikx JJMA, Martin J, Ciccolini J, Moes DJAR. Unraveling the complexity of therapeutic drug monitoring for monoclonal antibody therapies to individualize dose in oncology. Pharm Res Perspect. 2021;9:e00757.

    Article  CAS  Google Scholar 

  41. Beumer JH, Chu E, Salamone SJ. All optimal dosing roads lead to therapeutic drug monitoring—why take the slow lane. JAMA Oncol. 2022;8:1733–5.

    Article  PubMed  Google Scholar 

  42. Taylor JMG, Yu M, Sandler HM. Individualized predictions of disease progression following radiation therapy for prostate cancer. J Clin Oncol. 2005;23:816–25.

    Article  PubMed  Google Scholar 

  43. Sène M, Mg Taylor J, Dignam JJ, Jacqmin-Gadda H, Proust-Lima C. Individualized dynamic prediction of prostate cancer recurrence with and without the initiation of a second treatment: development and validation. Stat Methods Med Res. 2016;25:2972–91.

    Article  PubMed  Google Scholar 

  44. Krishnan SM, Friberg LE. Bayesian forecasting of tumor size metrics and overall survival. CPT Pharmacomet Syst Pharm. 2022;00:1–10. https://doi.org/10.1002/psp4.12869.

    Article  CAS  Google Scholar 

  45. Beyer U, Dejardin D, Meller M, Rufibach K, Burger HU. A multistate model for early decision-making in oncology. Biom J. 2020;62:550–67.

    Article  PubMed  Google Scholar 

  46. Role of Modelling and Simulation in Regulatory Decision Making in Europe. “https://www.ema.europa.eu/en/documents/presentation/presentation-role-modelling-simulation-regulatory-decision-making-europe_en.pdf; accessed October 14, 2022.

  47. Maitland ML, O’Cearbhaill RE, Gobburu J. Cancer clinical investigators should converge with pharmacometricians. Clin Cancer Res. 2019;25:5182–4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mushti SL, Mulkey F, Sridhara R. Evaluation of overall response rate and progression-free survival as potential surrogate endpoints for overall survival in immunotherapy trials. Clin Cancer Res. 2018;24:2268–75.

    Article  CAS  PubMed  Google Scholar 

  49. Burzykowski T, Coart E, Saad ED, Shi Q, Sommeijer DW, Bokemeyer C, et al. Evaluation of continuous tumor-size-based end points as surrogates for overall survival in randomized clinical trials in metastatic colorectal cancer. JAMA Netw Open. 2019;2:e1911750.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Krishnan SM, Friberg LE, Mercier F, Zhang R, Wu B, Jin JY, et al. Multistate pharmacometric model to define the impact of second-line immunotherapies on the survival outcome of IMpower131 study. Clin Pharmacol Ther. 2023; https://doi.org/10.1002/cpt.2838.

  51. Zhou J, Liu Y, Zhang Y, Li Q, Cao Y. Modeling tumor evolutionary dynamics to predict clinical outcomes for patients with metastatic colorectal cancer: a retrospective analysis. Cancer Res. 2020;80:591–601.

    Article  CAS  PubMed  Google Scholar 

  52. Chanu P, Wang X, Li Z, Chen S-C, Samineni D, Susilo M, et al. A disease model for multiple myeloma developed using real world data. PAGE 2021;Abstr 9878. www.page-meeting.org/?abstract=9878.

  53. Chan P, Zhou X, Wang N, Liu Q, Bruno R, Jin YJ. Application of machine learning for tumor growth inhibition—overall survival modeling platform. CPT Pharmacomet Syst Pharm. 2021;10:59–66.

    Article  CAS  Google Scholar 

  54. Duda M, Chan P, Bruno R, Jin YJ, Lu J. A pan-indication machine learning (ML) model for tumor growth inhibition—overall survival (TGI-OS) prediction. Clin Pharm Ther. 2021;109:S25.

    Google Scholar 

  55. Laurie M, Lu J. Neural ordinary differential equations for tumor dynamics modeling and overall survival predictions. PAGE 2022;Abstr 9992 www.page-meeting.org/?abstract=9992.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

RB, PC, MK, FM and KY wrote the manuscript. All authors reviewed and edited the manuscript. All authors approved the version to be published.

Corresponding author

Correspondence to René Bruno.

Ethics declarations

Competing interests

All authors but JG are Roche employees and hold Roche stocks. JG declares no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, R., Chanu, P., Kågedal, M. et al. Support to early clinical decisions in drug development and personalised medicine with checkpoint inhibitors using dynamic biomarker-overall survival models. Br J Cancer 129, 1383–1388 (2023). https://doi.org/10.1038/s41416-023-02190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02190-5

This article is cited by

Search

Quick links