Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corynoxine promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in Alzheimer’s disease models

Abstract

Autophagy impairment is a key factor in Alzheimer’s disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson’s disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in AD models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cory improves cognitive functions and rescues memory deficiency in 5xFAD mice.
Fig. 2: Cory enhances autophagy and reduces APP/CTFs accumulation in 5xFAD mice.
Fig. 3: Cory enhances autophagy flux and lysosomal biogenesis in neuronal cell.
Fig. 4: Cory-induced autophagy was through the nuclear translocation of TFEB/TFE3.
Fig. 5: The translocation of Cory-mediated TFEB/TFE3 into the nucleus is dependent on the AKT/mTOR pathway.
Fig. 6: TRPML1 inhibition hinders Cory-induced TFEB/TFE3 nuclear translocation and autophagy activation.
Fig. 7: Cory reduces APP and CTFs protein levels in N2aSwedAPP cells.
Fig. 8: Cory activates TFEB/TFE3 in the hippocampus of 5xFAD mice.
Fig. 9: Schematic illustration of the mechanism in Cory-mediated autophagy.

Similar content being viewed by others

References

  1. Haque RU, Levey AI. Alzheimer’s disease: A clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci USA. 2019;116:26224–9.

  2. Zhang F, Zhong RJ, Cheng C, Li S, Le WD. New therapeutics beyond amyloid-beta and tau for the treatment of Alzheimer’s disease. Acta Pharmacol Sin. 2021;42:1382–9.

    Article  CAS  PubMed  Google Scholar 

  3. Baumann KN, Sneideriene G, Sanguanini M, Schneider M, Rimon O, Gonzalez Diaz A, et al. A kinetic map of the influence of biomimetic lipid model membranes on Abeta(42) aggregation. ACS Chem Neurosci. 2022;14:323–9.

  4. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25:59–70.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Z, Yang X, Song YQ, Tu J. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res Rev. 2021;72:101464.

    Article  CAS  PubMed  Google Scholar 

  6. Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16:345–57.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Yang X, Song YQ, Tu J. Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev. 2021;72:101464.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JW, Jung SY, Kim Y, Heo H, Hong CH, Seo SW, et al. Identification of cathepsin D as a plasma biomarker for Alzheimer’s disease. Cells. 2021;10:138.

  9. Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, et al. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int J Mol Sci. 2019;20:728.

  10. Hung C, Livesey FJ. Endolysosome and autophagy dysfunction in Alzheimer disease. Autophagy. 2021;17:3882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kao CH, Su TY, Huang WS, Lu XY, Jane WN, Huang CY, et al. TFEB- and TFE3-dependent autophagy activation supports cancer proliferation in the absence of centrosomes. Autophagy. 2022;18:2830–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paquette M, El-Houjeiri L, C Zirden L, Puustinen P, Blanchette P, Jeong H, et al. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy. 2021;17:3957–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iyaswamy A, Wang X, Krishnamoorthi S, Kaliamoorthy V, Sreenivasmurthy SG, Kumar Durairajan SS, et al. Theranostic F-SLOH mitigates Alzheimer’s disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer’s disease models. Redox Biol. 2022;51:102280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang C, Zhu Z, Tong BC, Iyaswamy A, Xie WJ, Zhu Y, et al. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis independent of p38. Redox Biol. 2020;32:101445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kastanenka KV, Bussiere T, Shakerdge N, Qian F, Weinreb PH, Rhodes K, et al. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. J Neurosci. 2016;36:12549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raben N, Puertollano R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Biol. 2016;32:255–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soriano EV, Zhang Y, Colabroy KL, Sanders JM, Settembre EC, Dorrestein PC, et al. Active-site models for complexes of quinolinate synthase with substrates and intermediates. Acta Crystallogr D Biol Crystallogr. 2013;69:1685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malek M, Wawrzyniak AM, Ebner M, Puchkov D, Haucke V. Inositol triphosphate-triggered calcium release from the endoplasmic reticulum induces lysosome biogenesis via TFEB/TFE3. J Biol Chem. 2022;298:101740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee J, Jin C, Cho SY, Park SU, Jung WS, Moon SK, et al. Herbal medicine treatment for Alzheimer disease: a protocol for a systematic review and meta-analysis. Medicine. 2020;99:e21745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsieh CL, Chen MF, Li TC, Li SC, Tang NY, Hsieh CT, et al. Anticonvulsant effect of Uncaria rhynchophylla (Miq) Jack. in rats with kainic acid-induced epileptic seizure. Am J Chin Med. 1999;27:257–64.

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh CL, Tang NY, Chiang SY, Hsieh CT, Lin JG. Anticonvulsive and free radical scavenging actions of two herbs, Uncaria rhynchophylla (MIQ) Jack and Gastrodia elata Bl., in kainic acid-treated rats. Life Sci. 1999;65:2071–82.

    Article  CAS  PubMed  Google Scholar 

  22. Liu L, Zhao YH, Zeng CQ, Zeng Y. [Research progress in pharmacological effects of Uncaria Hook on Alzheimer disease models]. Yao Xue Xue Bao. 2016;51:536–42.

    PubMed  Google Scholar 

  23. Liu LF, Song JX, Lu JH, Huang YY, Zeng Y, Chen LL, et al. Tianma Gouteng Yin, a traditional Chinese medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson’s disease. Sci Rep. 2015;5:16862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng P, Wang XM, Ye CY, Su HF, Tian Q. The main alkaloids in Uncaria rhynchophylla and their anti-Alzheimer’s disease mechanism determined by a network pharmacology approach. Int J Mol Sci. 202;22:3612.

  25. Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SS, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. J Neuroimmune Pharmacol. 2014;9:380–7.

    Article  PubMed  Google Scholar 

  26. Tong BC, Wu AJ, Huang AS, Dong R, Malampati S, Iyaswamy A, et al. Lysosomal TPCN (two pore segment channel) inhibition ameliorates beta-amyloid pathology and mitigates memory impairment in Alzheimer’s disease. Autophagy. 2022;18:624–42.

    Article  CAS  PubMed  Google Scholar 

  27. Iyaswamy A, Krishnamoorthi SK, Song JX, Yang CB, Kaliyamoorthy V, Zhang H, et al. NeuroDefend, a novel Chinese medicine, attenuates amyloid-beta and tau pathology in experimental Alzheimer’s disease models. J Food Drug Anal. 2020;28:132–46.

    Article  CAS  PubMed  Google Scholar 

  28. Song JX, Malampati S, Zeng Y, Durairajan SSK, Yang CB, Tong BC, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell. 2020;19:e13069.

    Article  CAS  PubMed  Google Scholar 

  29. Tong BC, Huang AS, Wu AJ, Iyaswamy A, Ho OK, Kong AH, et al. Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies. J Biomed Sci. 2022;29:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zheng X, Lin W, Jiang Y, Lu K, Wei W, Huo Q, et al. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy. 2021;17:3833–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scotto Rosato A, Montefusco S, Soldati C, Di Paola S, Capuozzo A, Monfregola J, et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKbeta/VPS34 pathway. Nat Commun. 2019;10:5630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Paola S, Scotto-Rosato A, Medina DL. TRPML1: The Ca2+ retaker of the lysosome. Cell Calcium. 2018;69:112–21.

    Article  PubMed  Google Scholar 

  34. Wang T, Wu Z, Sun L, Li W, Liu G, Tang Y. A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula Tian-Ma-Gou-Teng-Yin for treatment of Alzheimer’s disease. Front Pharmacol. 2018;9:668.

    Article  Google Scholar 

  35. Chen L, Huang Y, Yu X, Lu J, Jia W, Song J, et al. Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front Pharmacol. 2021;12:642900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, et al. HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy. 2014;10:144–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, et al. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy. 2012;8:98–108.

    Article  CAS  PubMed  Google Scholar 

  38. van der Welle REN, Jobling R, Burns C, Sanza P, van der Beek JA, Fasano A, et al. Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation. EMBO Mol Med. 2021;13:e13258.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Medina DL. TRPML1 and TFEB, an Intimate Affair. Handb Exp Pharmacol. 2023;278:109–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Alan Ho for provision of equipment and technical training. We would like to thank Dr. Martha Dahlen for her English editing of this manuscript. This study was supported by Hong Kong Health and Medical Research Fund (HMRF/17182551, HMRF/09203776) and the Hong Kong General Research Fund (CRF/C2011-21GF, HKBU 12101022) from Hong Kong Government. The study was partly supported by the Research Fund from Hong Kong Baptist University (HKBU/RC-IRCs/17-18/03, IRCMS/19-20/H02), GDSSIL/84-506/2019 and the National Natural Science Foundation of China (82074042).

Author information

Authors and Affiliations

Authors

Contributions

JXS, AI, and ML designed the research; XJG, AI, JL, BCKT, ZZ, CFS, YXK, and SGS and performed the main experiments; XJG, AI, KJL, and ZQD analyzed the data; XJG, ZQD, and JXS wrote the paper; XJG, ZZ, SGS, CPKC, KHC, RBP, ZQD, JXS, and ML revised the paper; JXS and ML supervised the study.

Corresponding authors

Correspondence to Ashok Iyaswamy, Ju-xian Song or Min Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Xj., Deng, Zq., Liu, J. et al. Corynoxine promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in Alzheimer’s disease models. Acta Pharmacol Sin 45, 900–913 (2024). https://doi.org/10.1038/s41401-023-01197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01197-1

Keywords

Search

Quick links