Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition

Abstract

Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg−1·d−1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 μM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3’s downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zonisamide improved cardiac function in mice with pressure overload.
Fig. 2: Zonisamide alleviated myocardial hypertrophy and myocardial fibrosis in the hearts of mice with pressure overload induced by TAC.
Fig. 3: Zonisamide alleviated angiotensin II (Ang II)-triggered myocardial hypertrophy and myocardial fibrosis in vitro.
Fig. 4: Zonisamide inhibited the proteasome activities and subunits in TAC mice and hypertrophic NRCMs.
Fig. 5: Zonisamide alleviated myocardial hypertrophy by suppressing activated proteasome.
Fig. 6: The effects of zonisamide on glycogen synthesis kinase 3 (GSK-3), AKT (protein kinase B, PKB), liver kinase B1(LKB1), AMP-activated protein kinase (AMPKα), extracellular signal-regulated kinase (ERK), and GATA binding protein 4 (GATA4).
Fig. 7: Crystal structure and bindings of zonisamide with proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2, and PSMB5), and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4).
Fig. 8: Schematic diagram of zonisamide on pressure overload-induced myocardial hypertrophy.

Similar content being viewed by others

References

  1. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.

    Article  CAS  PubMed  Google Scholar 

  2. Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA, et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol. 2017;174:S17–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102:470–9.

    Article  CAS  PubMed  Google Scholar 

  4. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Drazner MH, Rame JE, Marino EK, Gottdiener JS, Kitzman DW, Gardin JM, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol. 2004;43:2207–15.

    Article  PubMed  Google Scholar 

  6. Klein L, O’Connor CM, Gattis WA, Zampino M, de Luca L, Vitarelli A, et al. Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am J Cardiol. 2003;91:18F–40F.

    Article  CAS  PubMed  Google Scholar 

  7. Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta. 2008;1782:749–63.

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Li J, Zheng H, Su H, Powell SR. Proteasome functional insufficiency in cardiac pathogenesis. Am J Physiol Heart Circ Physiol. 2011;301:H2207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ. Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics. 2003;3:208–16.

    Article  CAS  PubMed  Google Scholar 

  10. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24.

    Article  CAS  PubMed  Google Scholar 

  11. Birks EJ, Latif N, Enesa K, Folkvang T, Luong le A, Sarathchandra P, et al. Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res. 2008;79:472–80.

    Article  CAS  PubMed  Google Scholar 

  12. Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, et al. Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation. 2006;114:1821–8.

    Article  CAS  PubMed  Google Scholar 

  13. Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, et al. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation. 2010;121:997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T, Carrier L. Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil. 2012;33:5–15.

    Article  CAS  PubMed  Google Scholar 

  15. Meiners S, Dreger H, Fechner M, Bieler S, Rother W, Gunther C, et al. Suppression of cardiomyocyte hypertrophy by inhibition of the ubiquitin-proteasome system. Hypertension. 2008;51:302–8.

    Article  CAS  PubMed  Google Scholar 

  16. Chen K, Rekep M, Wei W, Wu Q, Xue Q, Li S, et al. Quercetin prevents in vivo and in vitro myocardial hypertrophy through the proteasome-GSK-3 pathway. Cardiovasc Drugs Ther. 2018;32:5–21.

    Article  CAS  PubMed  Google Scholar 

  17. Lal H, Ahmad F, Woodgett J, Force T. The GSK-3 family as therapeutic target for myocardial diseases. Circ Res. 2015;116:138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hardt SE, Sadoshima J. Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res. 2002;90:1055–63.

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Zhang S, Cheng H, Lv H, Cheng G, Ci X. Nrf2-mediated liver protection by esculentoside A against acetaminophen toxicity through the AMPK/Akt/GSK3beta pathway. Free Radic Biol Med. 2016;101:401–12.

    Article  CAS  PubMed  Google Scholar 

  20. Maejima Y, Galeotti J, Molkentin JD, Sadoshima J, Zhai P. Constitutively active MEK1 rescues cardiac dysfunction caused by overexpressed GSK-3alpha during aging and hemodynamic pressure overload. Am J Physiol Heart Circ Physiol. 2012;303:H979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng H, Woodgett J, Maamari M, Force T. Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol. 2011;51:607–13.

    Article  CAS  PubMed  Google Scholar 

  22. Baulac M. Introduction to zonisamide. Epilepsy Res. 2006;68:S3–9.

    Article  CAS  PubMed  Google Scholar 

  23. Hoy SM. Zonisamide: a review of its use in the management of adults with partial seizures. Drugs. 2013;73:1321–38.

    Article  CAS  PubMed  Google Scholar 

  24. Holder JL Jr., Wilfong AA. Zonisamide in the treatment of epilepsy. Expert Opin Pharmacother. 2011;12:2573–81.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Q, Tian JH, He YX, Huang YY, Huang YQ, Zhang GP, et al. Zonisamide alleviates cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin. 2021;42:1587–97.

  26. Tian JH, Wu Q, He YX, Shen QY, Rekep M, Zhang GP, et al. Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin. 2021;42:393–403.

  27. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA. 1991;88:8277–81.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou N, Cai B, Ou CW, Zhang ZH, Liu XW, Yuan M, et al. Puerarin-7-O-glucuronide, a water-soluble puerarin metabolite, prevents angiotensin II-induced cardiomyocyte hypertrophy by reducing oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2017;390:535–45.

    Article  CAS  PubMed  Google Scholar 

  29. Hammarsten O, Mair J, Mockel M, Lindahl B, Jaffe AS. Possible mechanisms behind cardiac troponin elevations. Biomarkers. 2018;23:725–34.

    Article  CAS  PubMed  Google Scholar 

  30. Liu YH, Wei W, Yin J, Liu GP, Wang Q, Cao FY, et al. Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiol Aging. 2009;30:1949–61.

    Article  CAS  PubMed  Google Scholar 

  31. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98–106.

    Article  PubMed  Google Scholar 

  32. Mattiazzi AR, Cingolani HE, Montenegro H. Shortening fraction: its dependence on the Starling mechanism. Cardiovasc Res. 1981;15:475–82.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas JD, Flachskampf FA, Chen C, Guererro JL, Picard MH, Levine RA, et al. Isovolumic relaxation time varies predictably with its time constant and aortic and left atrial pressures: implications for the noninvasive evaluation of ventricular relaxation. Am Heart J. 1992;124:1305–13.

    Article  CAS  PubMed  Google Scholar 

  34. Mitter SS, Shah SJ, Thomas JD. A test in context: E/A and E/e’ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol. 2017;69:1451–64.

    Article  PubMed  Google Scholar 

  35. Wang J, Li Z, Wang Y, Zhang J, Zhao W, Fu M, et al. Qiliqiangxin enhances cardiac glucose metabolism and improves diastolic function in spontaneously hypertensive rats. Evid Based Complement Altern Med. 2017;2017:3197320.

    Article  Google Scholar 

  36. Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, Gonos ES, et al. 18alpha-glycyrrhetinic acid proteasome activator decelerates aging and Alzheimer’s disease progression in caenorhabditis elegans and neuronal cultures. Antioxid Redox Signal. 2016;25:855–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  CAS  PubMed  Google Scholar 

  38. Yang H, Negishi K, Otahal P, Marwick TH. Clinical prediction of incident heart failure risk: a systematic review and meta-analysis. Open Heart. 2015;2:e000222.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Leache L, Gutierrez-Valencia M, Finizola RM, Infante E, Finizola B, Pardo Pardo J, et al. Pharmacotherapy for hypertension-induced left ventricular hypertrophy. Cochrane Database Syst Rev. 2021;10:CD012039.

    PubMed  Google Scholar 

  40. Li N, Wang HX, Han QY, Li WJ, Zhang YL, Du J, et al. Activation of the cardiac proteasome promotes angiotension II-induced hypertrophy by down-regulation of ATRAP. J Mol Cell Cardiol. 2015;79:303–14.

    Article  CAS  PubMed  Google Scholar 

  41. Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71:170–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev. 2017;36:617–33.

    Article  CAS  PubMed  Google Scholar 

  43. Kim YM, Kim HJ. Proteasome inhibitor MG132 is toxic and inhibits the proliferation of rat neural stem cells but increases BDNF expression to protect neurons. Biomolecules. 2020;10:1507.

  44. Ojemann LM, Shastri RA, Wilensky AJ, Friel PN, Levy RH, McLean JR, et al. Comparative pharmacokinetics of zonisamide (CI-912) in epileptic patients on carbamazepine or phenytoin monotherapy. Ther Drug Monit. 1986;8:293–6.

    Article  CAS  PubMed  Google Scholar 

  45. Uno H, Kurokawa M, Masuda Y, Nishimura H. Studies on 3-substituted 1,2-benzisoxazole derivatives. 6. Syntheses of 3-(sulfamoylmethyl)-1,2-benzisoxazole derivatives and their anticonvulsant activities. J Med Chem. 1979;22:180–3.

    Article  CAS  PubMed  Google Scholar 

  46. Shinoda M, Akita M, Hasegawa M, Hasegawa T, Nabeshima T. The necessity of adjusting the dosage of zonisamide when coadministered with other anti-epileptic drugs. Biol Pharm Bull. 1996;19:1090–2.

    Article  CAS  PubMed  Google Scholar 

  47. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest. 1997;100:2315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991;5:3037–46.

    Article  CAS  PubMed  Google Scholar 

  50. Kim GJ, Jung H, Lee E, Chung SW. Histone deacetylase inhibitor, mocetinostat, regulates cardiac remodelling and renin-angiotensin system activity in rats with transverse aortic constriction-induced pressure overload cardiac hypertrophy. Rev Cardiovasc Med. 2021;22:1037–45.

    Article  PubMed  Google Scholar 

  51. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.

    Article  CAS  PubMed  Google Scholar 

  52. Lal H, Zhou J, Ahmad F, Zaka R, Vagnozzi RJ, Decaul M, et al. Glycogen synthase kinase-3alpha limits ischemic injury, cardiac rupture, post-myocardial infarction remodeling and death. Circulation. 2012;125:65–75.

    Article  CAS  PubMed  Google Scholar 

  53. Blankesteijn WM, van de Schans VA, ter Horst P, Smits JF. The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci. 2008;29:175–80.

    Article  CAS  PubMed  Google Scholar 

  54. Woodgett JR. Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol. 2005;17:150–7.

    Article  CAS  PubMed  Google Scholar 

  55. Shirwany NA, Zou MH. AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed). 2014;19:447–74.

    Article  PubMed  Google Scholar 

  56. Ritho J, Arold ST, Yeh ET. A critical SUMO1 modification of LKB1 regulates AMPK activity during energy stress. Cell Rep. 2015;12:734–42.

    Article  CAS  PubMed  Google Scholar 

  57. Luu BE, Tessier SN, Duford DL, Storey KB. The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PLoS One. 2015;10:e0117747.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee H, Park J, Kim EE, Yoo YS, Song EJ. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells. BMB Rep. 2016;49:270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen HP, Denicola M, Qin X, Zhao Y, Zhang L, Long XL, et al. HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway. J Cell Biochem. 2011;112:3246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–5.

    Article  CAS  PubMed  Google Scholar 

  61. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  62. Marson A, Burnside G, Appleton R, Smith D, Leach JP, Sills G, et al. The SANAD II study of the effectiveness and cost-effectiveness of levetiracetam, zonisamide, or lamotrigine for newly diagnosed focal epilepsy: an open-label, non-inferiority, multicentre, phase 4, randomised controlled trial. Lancet. 2021;397:1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gomes HL, Graceli JB, Goncalves WL, dos Santos RL, Abreu GR, Bissoli NS, et al. Influence of gender and estrous cycle on plasma and renal catecholamine levels in rats. Can J Physiol Pharmacol. 2012;90:75–82.

    Article  CAS  PubMed  Google Scholar 

  64. Neves LA, Averill DB, Ferrario CM, Aschner JL, Brosnihan KB. Vascular responses to angiotensin-(1-7) during the estrous cycle. Endocrine. 2004;24:161–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2022YFE0209700), Basic and Applied Basic Research Foundation of Guangzhou city (G23151013), Traditional Chinese Medicine Research Project of Guangdong Province (20241180), First-class Specialty Construction Project of Guangzhou Medical University (02-408-2304-13048XM), Discipline Construction Project of Guangzhou Medical University (02-445-2301192XM, 02-445-2301223XM, 02-445-2301191XM), Quality Project of Guangdong Province (01-408-2301064XM), Education Reform Project of Guangzhou Medical University (01-408-2301033XM), First-class Specialty Construction Project of Guangzhou Medical University (02-408-2304-13014XM), Research capacity improvement project of Guangzhou Medical University (02-410-2302365XM), and Basic and Applied Basic Research Project of Guangzhou city (2023A04J0565).

Author information

Authors and Affiliations

Authors

Contributions

QW designed the study; QW carried out the study and wrote the paper; QW performed the experiments; WJL, XYM, JSC, and XYZ participated in the animal experiment; XYY and YHL conceived, and supervised the study and helped in discussing the data.

Corresponding authors

Correspondence to Ying-hua Liu or Xi-yong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Liu, Wj., Ma, Xy. et al. Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition. Acta Pharmacol Sin 45, 738–750 (2024). https://doi.org/10.1038/s41401-023-01191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01191-7

Keywords

Search

Quick links