Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hesperetin derivative 2a inhibits lipopolysaccharide-induced acute liver injury in mice via downregulation of circDcbld2

Abstract

Acute liver injury (ALI) is a complex, life-threatening inflammatory liver disease, and persistent liver damage leads to rapid decline and even failure of liver function. However, the pathogenesis of ALI is still not fully understood, and no effective treatment has been discovered. Recent evidence shows that many circular RNAs (circRNAs) are associated with the occurrence of liver diseases. In this study we investigated the mechanisms of occurrence and development of ALI in lipopolysaccharide (LPS)-induced ALI mice. We found that expression of the circular RNA circDcbld2 was significantly elevated in the liver tissues of ALI mice and LPS-treated RAW264.7 cells. Knockdown of circDcbld2 markedly alleviates LPS-induced inflammatory responses in ALI mice and RAW264.7 cells. We designed and synthesized a series of hesperidin derivatives for circDcbld2, and found that hesperetin derivative 2a (HD-2a) at the concentrations of 2, 4, 8 μM effectively inhibited circDcbld2 expression in RAW264.7 cells. Administration of HD-2a (50, 100, 200 mg/kg. i.g., once 24 h in advance) effectively relieved LPS-induced liver dysfunction and inflammatory responses. RNA sequencing analysis revealed that the anti-inflammatory and hepatoprotective effects of HD-2a were mediated through downregulating circDcbld2 and suppressing the JAK2/STAT3 pathway. We conclude that HD-2a downregulates circDcbld2 to inhibit the JAK2/STAT3 pathway, thereby inhibiting the inflammatory responses in ALI. The results suggest that circDcbld2 may be a potential target for the prevention and treatment of ALI, and HD-2a may have potential as a drug for the treatment of ALI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The abnormal expression of circDcbld2 is associated with the development of ALI in mice.
Fig. 2: Inhibition and overexpression of circDcbld2 regulated LPS-induced inflammatory responses in RAW264.7 cell.
Fig. 3: HD-2a inhibited circDcbld2 expression to alleviate liver injury in ALI mice.
Fig. 4: Anti-inflammatory effects of HD-2a on mice with acute liver injury.
Fig. 5: HD-2a attenuates inflammatory responses in LPS-treated RAW264.7 cells.
Fig. 6: HD-2a inhibited circDcbld2 to suppress JAK2/STAT3 signaling.
Fig. 7

Similar content being viewed by others

References

  1. Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E, et al. Global epidemiology of cirrhosis - aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20:388–98.

  2. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70:151–71.

    Article  PubMed  Google Scholar 

  3. Roohani S, Tacke F. Liver injury and the macrophage issue: molecular and mechanistic facts and their clinical relevance. Int J Mol Sci. 2021;22:7249.

  4. Du L, Zheng Y, Yang YH, Huang YJ, Hao YM, Chen C, et al. Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation. Food Funct. 2022;13:3853–64.

    Article  PubMed  CAS  Google Scholar 

  5. Khurana A, Navik U, Allawadhi P, Yadav P, Weiskirchen R. Spotlight on liver macrophages for halting liver disease progression and injury. Expert Opin Ther Targets. 2022;26:707–19.

    Article  PubMed  Google Scholar 

  6. Tsutsui H, Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int J Mol Sci. 2014;15:7711–30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, et al. Macrophage polarization and its role in liver disease. Front Immunol. 2021;12:803037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sun YY, Li XF, Meng XM, Huang C, Zhang L, Li J. Macrophage phenotype in liver injury and repair. Scand J Immunol. 2017;85:166–74.

    Article  PubMed  Google Scholar 

  9. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18:45–56.

    Article  PubMed  CAS  Google Scholar 

  10. Ray G. Management of liver diseases: current perspectives. World J Gastroenterol. 2022;28:5818–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liu YB, Chen MK. Epidemiology of liver cirrhosis and associated complications: current knowledge and future directions. World J Gastroenterol. 2022;28:5910–30.

  12. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

    Article  PubMed  CAS  Google Scholar 

  13. Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, et al. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis. 2023;14:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, et al. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int. 2022;22:141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29:481–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  PubMed  CAS  Google Scholar 

  17. Lv S, Li Y, Ning H, Zhang M, Jia Q, Wang X. CircRNA GFRA1 promotes hepatocellular carcinoma progression by modulating the miR-498/NAP1L3 axis. Sci Rep. 2021;11:386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen X, Li HD, Bu FT, Li XF, Chen Y, Zhu S, et al. Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/FBXW7 axis. Theranostics. 2020;10:4851–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Meng H, Niu R, Huang C, Li J. Circular RNA as a novel biomarker and therapeutic target for HCC. Cells. 2022;11:1948.

  20. Zhu S, Chen X, Wang JN, Xu JJ, Wang A, Li JJ, et al. Circular RNA circUbe2k promotes hepatic fibrosis via sponging miR-149-5p/TGF-beta2 axis. FASEB J. 2021;35:e21622.

    Article  PubMed  CAS  Google Scholar 

  21. Yang YR, Hu S, Bu FT, Li H, Huang C, Meng XM, et al. Circular RNA CREBBP suppresses hepatic fibrosis via targeting the hsa-miR-1291/LEFTY2 Axis. Front Pharmacol. 2021;12:741151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Huang AL, Zhang YL, Ding HW, Li B, Huang C, Meng XM, et al. Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives. Int Immunopharmacol. 2018;61:82–91.

    Article  PubMed  CAS  Google Scholar 

  23. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124:64–74.

    Article  PubMed  CAS  Google Scholar 

  24. Lu Q, Lai Y, Zhang H, Ren K, Liu W, An Y, et al. Hesperetin inhibits TGF-beta1-induced migration and invasion of triple negative breast cancer MDA-MB-231 cells via suppressing Fyn/Paxillin/RhoA pathway. Integr Cancer Ther. 2022;21:15347354221086900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29:323–31.

    Article  PubMed  CAS  Google Scholar 

  26. Wang SW, Wang W, Sheng H, Bai YF, Weng YY, Fan XY, et al. Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway. Int Immunopharmacol. 2020;89:107036.

    Article  PubMed  CAS  Google Scholar 

  27. Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-kappaB signaling. Nutrients. 2019;11:648.

  28. Chen X, Li XF, Chen Y, Zhu S, Li HD, Chen SY, et al. Hesperetin derivative attenuates CCl4-induced hepatic fibrosis and inflammation by Gli-1-dependent mechanisms. Int Immunopharmacol. 2019;76:105838.

    Article  PubMed  CAS  Google Scholar 

  29. Chen X, Ding HW, Li HD, Huang HM, Li XF, Yang Y, et al. Hesperetin derivative-14 alleviates inflammation by activating PPAR-gamma in mice with CCl4-induced acute liver injury and LPS-treated RAW264.7 cells. Toxicol Lett. 2017;274:51–63.

    Article  PubMed  CAS  Google Scholar 

  30. Li JJ, Jiang HC, Wang A, Bu FT, Jia PC, Zhu S, et al. Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur J Pharmacol. 2022;915:174530.

    Article  PubMed  CAS  Google Scholar 

  31. Liu Z, Wang M, Wang X, Bu Q, Wang Q, Su W, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. Redox Biol. 2022;52:102305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Loan Young T, Chang Wang K, James Varley A, Li B. Clinical delivery of circular RNA: Lessons learned from RNA drug development. Adv Drug Deliv Rev. 2023;197:114826.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao C, Qian S, Tai Y, Guo Y, Tang C, Huang Z, et al. Proangiogenic role of circRNA-007371 in liver fibrosis. Cell Prolif. 2023;56:e13432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Song R, Ma S, Xu J, Ren X, Guo P, Liu H, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 2023;22:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hu Z, Chen G, Zhao Y, Gao H, Li L, Yin Y, et al. Exosome-derived circCCAR1 promotes CD8+ T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li J, Qi J, Tang Y, Liu H, Zhou K, Dai Z, et al. A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis. J Nanobiotechnol. 2021;19:363.

    Article  CAS  Google Scholar 

  37. Kong LN, Lin X, Huang C, Ma TT, Meng XM, Hu CJ, et al. Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway. Chin J Nat Med. 2019;17:122–30.

    PubMed  CAS  Google Scholar 

  38. Lescoat A, Lelong M, Jeljeli M, Piquet-Pellorce C, Morzadec C, Ballerie A, et al. Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: Perspectives for scleroderma-associated interstitial lung disease. Biochem Pharmacol. 2020;178:114103.

    Article  PubMed  CAS  Google Scholar 

  39. Hazem SH, Shaker ME, Ashamallah SA, Ibrahim TM. The novel Janus kinase inhibitor ruxolitinib confers protection against carbon tetrachloride-induced hepatotoxicity via multiple mechanisms. Chem Biol Interact. 2014;220:116–27.

    Article  PubMed  CAS  Google Scholar 

  40. Febvre-James M, Lecureur V, Augagneur Y, Mayati A, Fardel O. Repression of interferon beta-regulated cytokines by the JAK1/2 inhibitor ruxolitinib in inflammatory human macrophages. Int Immunopharmacol. 2018;54:354–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. U19A2001, 82070628, 82300722), and funds from the University Synergy Innovation Programme of Anhui Province (GXXT-2020-063 and GXXT-2020-025), and the China Postdoctoral Science Foundation (2022M710178).

Author information

Authors and Affiliations

Authors

Contributions

LJS, XC, SZ designed the manuscript and performed the experiments; JJX, XFL, SXD analyzed the data; YLY, JYL contributed all samples, reagents and materials; JL contributed to all aspects of this study, data interpretation, and revised the manuscript for publication. All authors have revised and approved the final manuscript.

Corresponding authors

Correspondence to Xiong-wen Lv or Jun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Lj., Chen, X., Zhu, S. et al. Hesperetin derivative 2a inhibits lipopolysaccharide-induced acute liver injury in mice via downregulation of circDcbld2. Acta Pharmacol Sin 45, 354–365 (2024). https://doi.org/10.1038/s41401-023-01171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01171-x

Keywords

Search

Quick links