Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Administration of A. muciniphila ameliorates pulmonary arterial hypertension by targeting miR-208a-3p/NOVA1 axis

Abstract

Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 μL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3′-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gavage of A. muciniphila improved hypoxia-induced PH.
Fig. 2: A. muciniphila altered gut microbiota in hypoxia-induced PH mice.
Fig. 3: A. muciniphila could regulate the expression of miR-208a-3p in hypoxia condition.
Fig. 4: MiR-208a-3p mimic inhibited the proliferation of hPASMCs under hypoxia condition.
Fig. 5: Knockdown of miR-208a-3p reversed the effects of A. muciniphila on hypoxia-induced PH.
Fig. 6: A. muciniphila decreased the expression of NOVA1 by regulating miR-208a-3p.
Fig. 7: NOVA1 silencing regulated proliferation and cell cycle of hPASMCs.
Fig. 8: Schematic diagram illustrating the proposed mechanisms of the effects of A. muciniphila on PH.

Similar content being viewed by others

References

  1. Deng H, Tian X, Sun H, Liu H, Lu M, Wang H. Calpain-1 mediates vascular remodelling and fibrosis via HIF-1alpha in hypoxia-induced pulmonary hypertension. J Cell Mol Med. 2022;26:2819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yan Y, Xu Y, Ni G, Wang S, Li X, Gao J, et al. MicroRNA-221 promotes proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) by targeting tissue inhibitor of metalloproteinases-3 (TIMP3). Cardiovasc Diagn Ther. 2020;10:646–57.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang Y, Li R, Cao Y, Dai S, Luo S, Guo Q, et al. Plasma MIR-212-3p as a biomarker for acute right heart failure with pulmonary artery hypertension. Ann Transl Med. 2020;8:1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Zhang J, Sun H, Chen Y, Li W, Yu X, et al. lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia. Mol Ther. 2021;29:1411–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma W, Qiu Z, Bai Z, Dai Y, Li C, Chen X, et al. Inhibition of microRNA-30a alleviates vascular remodeling in pulmonary arterial hypertension. Mol Ther Nucleic Acids. 2021;26:678–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Russomanno G, Jo KB, Abdul-Salam VB, Morgan C, Endruschat J, Schaeper U, et al. miR-150-PTPMT1-cardiolipin signaling in pulmonary arterial hypertension. Mol Ther Nucleic Acids. 2021;23:142–53.

    Article  CAS  PubMed  Google Scholar 

  7. Yi L, Liu J, Deng M, Zuo H, Li M. Emodin inhibits viability, proliferation and promotes apoptosis of hypoxic human pulmonary artery smooth muscle cells via targeting miR-244-5p/DEGS1 axis. BMC Pulm Med. 2021;21:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang L, Zhang H, Liu Y, Long Y. The role of gut and airway microbiota in pulmonary arterial hypertension. Front Microbiol. 2022;13:929752.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim S, Rigatto K, Gazzana MB, Knorst MM, Richards EM, Pepine CJ, et al. Altered gut microbiome profile in patients with pulmonary arterial hypertension. Hypertension. 2020;75:1063–71.

    Article  CAS  PubMed  Google Scholar 

  10. Jia B, Zou Y, Han X, Bae JW, Jeon CO. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol. 2022;31:76–91.

    Article  PubMed  Google Scholar 

  11. Hong W, Mo Q, Wang L, Peng F, Zhou Y, Zou W, et al. Changes in the gut microbiome and metabolome in a rat model of pulmonary arterial hypertension. Bioengineered. 2021;12:5173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wedgwood S, Warford C, Agvatisiri SR, Thai PN, Chiamvimonvat N, Kalanetra KM, et al. The developing gut-lung axis: postnatal growth restriction, intestinal dysbiosis, and pulmonary hypertension in a rodent model. Pediatr Res. 2020;87:472–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sanada TJ, Hosomi K, Shoji H, Park J, Naito A, Ikubo Y, et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model. Pulm Circ. 2020;10:2045894020929147.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rao Y, Kuang Z, Li C, Guo S, Xu Y, Zhao D, et al. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes. 2021;13:1–19.

    Article  PubMed  Google Scholar 

  15. Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol. 2017;8:1804.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luo Y, Zhang Y, Han X, Yuan Y, Zhou Y, Gao Y, et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine. 2022;82:104087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He X, Bai Y, Zhou H, Wu K. Akkermansia muciniphila alters gut microbiota and immune system to improve cardiovascular diseases in murine model. Front Microbiol. 2022;13:906920.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang G, Tao X, Peng L. miR-155-5p regulates hypoxia-induced pulmonary artery smooth muscle cell function by targeting PYGL. Bioengineered. 2022;13:12985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Jiang R, Tan Y, Cheng K. Human pulmonary artery smooth muscle cell dysfunction is regulated by miR-509-5p in hypoxic environment. Cell Cycle. 2022;21:1212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paone P, Suriano F, Jian C, Korpela K, Delzenne NM, Van Hul M, et al. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes. 2022;14:2152307.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mody D, Verma V, Rani V. Modulating host gene expression via gut microbiome-microRNA interplay to treat human diseases. Crit Rev Microbiol. 2021;47:596–611.

    Article  CAS  PubMed  Google Scholar 

  22. Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med. 2019;11:eaav1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Veltman K, Hummel S, Cichon C, Sonnenborn U, Schmidt MA. Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. Int J Biochem Cell Biol. 2012;44:341–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou S, Zhu C, Jin S, Cui C, Xiao L, Yang Z, et al. The intestinal microbiota influences the microenvironment of metastatic colon cancer by targeting miRNAs. FEMS Microbiol Lett. 2022;369:fnac023.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ge XY, Zhu TT, Yao MZ, Liu H, Wu Q, Qiao J, et al. MicroRNA-137 inhibited hypoxia-induced proliferation of pulmonary artery smooth muscle cells by targeting calpain-2. Biomed Res Int. 2021;2021:2202888.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension. 2012;59:1006–13.

    Article  CAS  PubMed  Google Scholar 

  27. Sun L, Lin P, Chen Y, Yu H, Ren S, Wang J, et al. miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism. Theranostics. 2020;10:5581–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo L, Chen Q, Yang L, Zhang Z, Xu J, Gou D. MSCs therapy reverse the gut microbiota in hypoxia-induced pulmonary hypertension mice. Front Physiol. 2021;12:712139.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao M, Wang W, Lu Y, Wang N, Kong D, Shan L. [Corrigendum] MicroRNA‑153 attenuates hypoxia‑induced excessive proliferation and migration of pulmonary arterial smooth muscle cells by targeting ROCK1 and NFATc3. Mol Med Rep. 2022;26:332.

  30. Xing XQ, Li B, Xu SL, Liu J, Zhang CF, Yang J. MicroRNA-214-3p regulates hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration by targeting ARHGEF12. Med Sci Monit. 2019;25:5738–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen J, Zhou D, Miao J, Zhang C, Li X, Feng H, et al. Microbiome and metabolome dysbiosis of the gut-lung axis in pulmonary hypertension. Microbiol Res. 2022;265:127205.

    Article  PubMed  Google Scholar 

  32. Bachmann R, Van Hul M, Baldin P, Leonard D, Delzenne NM, Belzer C, et al. Akkermansia muciniphila reduces peritonitis and improves intestinal tissue wound healing after a colonic transmural defect by a MyD88-dependent mechanism. Cells. 2022;11:2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang CX, Jiang ZX, Du DY, Zhang ZM, Liu Y, Li YT. The MFF-SIRT1/3 axis, regulated by miR-340-5p, restores mitochondrial homeostasis of hypoxia-induced pulmonary artery smooth muscle cells. Lab Investig. 2022;102:515–23.

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira AC, Yang T, Li J, Sharma RK, Karas MK, Bryant AJ, et al. Fecal matter transplant from Ace2 overexpressing mice counteracts chronic hypoxia-induced pulmonary hypertension. Pulm Circ. 2022;12:e12015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Solinc J, Raimbault-Machado J, Dierick F, El Bernoussi L, Tu L, Thuillet R, et al. Platelet-derived growth factor receptor type alpha activation drives pulmonary vascular remodeling via progenitor cell proliferation and induces pulmonary hypertension. J Am Heart Assoc. 2022;11:e023021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langston-Cox A, Leo CH, Tare M, Wallace EM, Marshall SA. Sulforaphane improves vascular reactivity in mouse and human arteries after “preeclamptic-like” injury. Placenta. 2020;101:242–50.

    Article  CAS  PubMed  Google Scholar 

  37. Song K, Duan Q, Ren J, Yi J, Yu H, Che H, et al. Targeted metabolomics combined with network pharmacology to reveal the protective role of luteolin in pulmonary arterial hypertension. Food Funct. 2022;13:10695–709.

    Article  CAS  PubMed  Google Scholar 

  38. Liu C, Song C, Wang Y, Xiao Y, Zhou Z, Cao G, et al. Deep-fried Atractylodes lancea rhizome alleviates spleen deficiency diarrhea-induced short-chain fatty acid metabolic disorder in mice by remodeling the intestinal flora. J Ethnopharmacol. 2022;303:115967.

    Article  PubMed  Google Scholar 

  39. Cai H, Fan S, Cai L, Zhu L, Zhao Z, Li Y, et al. Dihydroartemisinin attenuates hypoxia-induced pulmonary hypertension through the ELAVL2/miR-503/PI3K/AKT axis. J Cardiovasc Pharmacol. 2022;80:95–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo ZW, Xia K, Liu YW, Liu JH, Rao SS, Hu XK, et al. Extracellular vesicles from Akkermansia muciniphila elicit antitumor immunity against prostate cancer via modulation of CD8+ T cells and macrophages. Int J Nanomed. 2021;16:2949–63.

    Article  Google Scholar 

  41. Zhu L, Lu X, Liu L, Voglmeir J, Zhong X, Yu Q. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Vet Res. 2020;51:34.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu MN, Zhang L, Dong XY, Liu M, Cheng G, Zhang XL, et al. [Effects of Akkermansia muciniphila on the proliferation, apoptosis and insulin secretion of rat islet cell tumor cells]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2020;51:13–7.

    PubMed  Google Scholar 

  43. Jose A, King CS, Shlobin OA, Kiernan JM, Cossa NA, Brown AW, et al. Ventricular diastolic pressure ratio as a marker of treatment response in pulmonary hypertension. Chest. 2017;152:980–9.

    Article  PubMed  Google Scholar 

  44. Pei T, Hu R, Wang F, Yang S, Feng H, Li Q, et al. Akkermansia muciniphila ameliorates chronic kidney disease interstitial fibrosis via the gut-renal axis. Micro Pathog. 2022;174:105891.

    Article  Google Scholar 

  45. Cruz CS, Ricci MF, Vieira AT. Gut microbiota modulation as a potential target for the treatment of lung infections. Front Pharmacol. 2021;12:724033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu C, Fan L, Lin Y, Shen W, Qi Y, Zhang Y, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes. 2021;13:1980347.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mahbobi R, Fallah F, Behmanesh A, Yadegar A, Hakemi-Vala M, Ehsanzadeh SJ, et al. Helicobacter pylori infection mediates inflammation and tumorigenesis-associated genes through miR-155-5p: an integrative omics and bioinformatics-based investigation. Curr Microbiol. 2022;79:192.

    Article  CAS  PubMed  Google Scholar 

  48. Fu Y, Wang Y, Bi K, Yang L, Sun Y, Li B, et al. MicroRNA-208a-3p promotes osteosarcoma progression via targeting PTEN. Exp Ther Med. 2020;20:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Li L, Liang P, Zhai X, Li Y, Zhou Y. Differential expression of microRNAs in medulloblastoma and the potential functional consequences. Turk Neurosurg. 2018;28:179–85.

    PubMed  Google Scholar 

  50. Wu H, Xu L, Chen Y, Xu C. MiR-208a-3p functions as an oncogene in colorectal cancer by targeting PDCD4. Biosci Rep. 2019;39:BSR20181598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krach F, Wheeler EC, Regensburger M, Boerstler T, Wend H, Vu AQ, et al. Aberrant NOVA1 function disrupts alternative splicing in early stages of amyotrophic lateral sclerosis. Acta Neuropathol. 2022;144:413–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brahma MK, Xiao P, Popa M, Negueruela J, Vandenbempt V, Demine S, et al. Nova1 or Bim deficiency in pancreatic beta-cells does not alter multiple low-dose streptozotocin-induced diabetes and diet-induced obesity in mice. Nutrients. 2022;14:3866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang ZY, Liu XX, Deng YF. Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death Differ. 2022;29:709–21.

    Article  PubMed  Google Scholar 

  54. Pedraza-Arevalo S, Alors-Perez E, Blazquez-Encinas R, Herrera-Martinez AD, Jimenez-Vacas JM, Fuentes-Fayos AC, et al. Spliceosomic dysregulation unveils NOVA1 as a candidate actionable therapeutic target in pancreatic neuroendocrine tumors. Transl Res. 2022;251:63–73.

    Article  PubMed  Google Scholar 

  55. Sun S, Wang R, Yi S, Li S, Wang L, Wang J. Roles of the microRNA-338-3p/NOVA1 axis in retinoblastoma. Mol Med Rep. 2021;23:394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ludlow AT, Wong MS, Robin JD, Batten K, Yuan L, Lai TP, et al. NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat Commun. 2018;9:3112.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key Research and Development Program of China (2021YFA1301100, 2021YFA1301101, 2022YFA1303801), the Research Project of Ji-nan Microecological Biomedicine Shandong Laboratory (JNL-2022001A) and the Fundamental Research Funds for the Central Universities (No. 2022ZFJH003).

Author information

Authors and Affiliations

Authors

Contributions

LJL and MFY designed the research and wrote the paper. ZYB and HML performed major experiments and analyzed the data. SBZ and YQF performed animal experiments. All the authors approved the final paper.

Corresponding authors

Correspondence to Ming-fei Yao or Lan-juan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Zy., Li, Hm., Zhang, Sb. et al. Administration of A. muciniphila ameliorates pulmonary arterial hypertension by targeting miR-208a-3p/NOVA1 axis. Acta Pharmacol Sin 44, 2201–2215 (2023). https://doi.org/10.1038/s41401-023-01126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01126-2

Keywords

Search

Quick links