Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways

Abstract

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg−1·d−1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1β, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1β and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A SIP combined proteomic approach was used to screen for potential target proteins interacting with sinomenine in LPS-induced macrophages.
Fig. 2: A SIP combined proteomic approach was used to screen for potential target proteins interacting with sinomenine in LPS-induced macrophages.
Fig. 3: GBP5 protein was identified as a direct binding target of sinomenine.
Fig. 4: GBP5 protein was identified as a direct binding target of sinomenine.
Fig. 5: Sinomenine regulated the activation of the GBP5/P2X7R/NLRP3 pathway in LPS-induced RAW264.7 cells.
Fig. 6: Sinomenine regulated the activation of the GBP5/P2X7R-NLRP3 pathway in LPS-induced RAW264.7 cells.
Fig. 7: Sinomenine dose-dependently reduced the levels of proinflammatory factors, ROS, and Ca2+ in LPS-induced RAW264.7 cells.
Fig. 8: Sinomenine dose-dependently alleviated arthritis symptoms in CIA mice.
Fig. 9: Sinomenine reduced the levels of proinflammatory cytokines and alleviated both joint inflammation and bone destruction in CIA mice.
Fig. 10: Sinomenine inhibited the activity of the GBP5/P2X7R-NLRP3 pathway in the paw tissue of CIA mice.
Fig. 11: Sinomenine suppressed the activity of the GBP5/P2X7R-NLRP3 pathway in the paw tissue of CIA mice.
Fig. 12: Schematic diagram of the molecular mechanism of SIN.

References

  1. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79:685–99.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur J Med Chem. 2018;158:502–16.

    Article  CAS  PubMed  Google Scholar 

  4. Behrens F, Koehm M, Rossmanith T, Alten R, Aringer M, Backhaus M, et al. Rituximab plus leflunomide in rheumatoid arthritis: a randomized, placebo-controlled, investigator-initiated clinical trial (AMARA study). Rheumatology (Oxf, Engl). 2021;60:5318–28.

    Article  CAS  Google Scholar 

  5. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295:2275–85.

    Article  CAS  PubMed  Google Scholar 

  6. Mohan N, Edwards ET, Cupps TR, Oliverio PJ, Sandberg G, Crayton H, et al. Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 2001;44:2862–9.

    Article  CAS  PubMed  Google Scholar 

  7. Yi L, Ke J, Liu J, Lai H, Lv Y, Peng C, et al. Sinomenine increases adenosine A(2A) receptor and inhibits NF-κB to inhibit arthritis in adjuvant-induced-arthritis rats and fibroblast-like synoviocytes through α7nAChR. J Leukoc Biol. 2021;110:1113–20.

    Article  CAS  PubMed  Google Scholar 

  8. Gao WJ, Liu JX, Xie Y, Luo P, Liu ZQ, Liu L, et al. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacol Res. 2021;167:105513.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Liu JX, Luo JF, Cheng CS, Leung EL, Li Y, et al. Suppressing mPGES-1 expression by sinomenine ameliorates inflammation and arthritis. Biochem Pharmacol. 2017;142:133–44.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang W, Fan W, Gao T, Li T, Yin Z, Guo H, et al. Analgesic mechanism of sinomenine against chronic pain. Pain Res Manag. 2020;2020:1876862.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kok TW, Yue PY, Mak NK, Fan TP, Liu L, Wong RN. The anti-angiogenic effect of sinomenine. Angiogenesis. 2005;8:3–12.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Li XK. Immunosuppressive and anti-inflammatory activities of sinomenine. Int Immunopharmacol. 2011;11:373–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gao LN, Zhong B, Wang Y. Mechanism underlying antitumor effects of sinomenine. Chin J Integr Med. 2019;25:873–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zou B, Tan Y, Su J, Wang Y, Xu J, et al. Sinomenine inhibits osteolysis in breast cancer by reducing IL-8/CXCR1 and c-Fos/NFATc1 signaling. Pharmacol Res. 2019;142:140–50.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang YS, Han JY, Iqbal O, Liang AH. Research advances and prospects on mechanism of sinomenin on histamine release and the binding to histamine receptors. Int J Mol Sci. 2018;20:70.

  16. Shi Y, Pan HD, Wu JL, Zou QH, Xie XY, Li HG, et al. The correlation between decreased ornithine level and alleviation of rheumatoid arthritis patients assessed by a randomized, placebo-controlled, double-blind clinical trial of sinomenine. Engineering (Beijing, China). 2022;16:93–9.

    CAS  Google Scholar 

  17. Huang RY, Pan HD, Wu JQ, Zhou H, Li ZG, Qiu P, et al. Comparison of combination therapy with methotrexate and sinomenine or leflunomide for active rheumatoid arthritis: A randomized controlled clinical trial. Phytomedicine. 2019;57:403–10.

    Article  CAS  PubMed  Google Scholar 

  18. Liu W, Liu XY, Liu B. Clinical observation on treatment of rheumatoid arthritis with zhengqing fengtongning retard tablets: a report of 60 cases. Zhong Xi Yi Jie He Xue Bao. 2006;4:201–2.

    Article  PubMed  Google Scholar 

  19. Lin Y, Yi O, Hu M, Hu S, Su Z, Liao J, et al. Multifunctional nanoparticles of sinomenine hydrochloride for treat-to-target therapy of rheumatoid arthritis via modulation of proinflammatory cytokines. J Control Release. 2022;348:42–56.

    Article  CAS  PubMed  Google Scholar 

  20. Yi L, Luo JF, Xie BB, Liu JX, Wang JY, Liu L, et al. α7 Nicotinic acetylcholine receptor is a novel mediator of sinomenine anti-inflammation effect in macrophages stimulated by lipopolysaccharide. Shock. 2015;44:188–95.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu RL, Zhi YK, Yi L, Luo JF, Li J, Bai SS, et al. Sinomenine regulates CD14/TLR4, JAK2/STAT3 pathway and calcium signal via α7nAChR to inhibit inflammation in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol. 2019;41:172–7.

    Article  CAS  PubMed  Google Scholar 

  22. Zhi YK, Li J, Yi L, Zhu RL, Luo JF, Shi QP, et al. Sinomenine inhibits macrophage M1 polarization by downregulating α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1. Phytomedicine. 2022;100:154050.

    Article  PubMed  Google Scholar 

  23. Yue M, Zhang X, Dou Y, Wei Z, Tao Y, Xia Y, et al. Gut-sourced vasoactive intestinal polypeptide induced by the activation of α7 nicotinic acetylcholine receptor substantially contributes to the anti-inflammatory effect of sinomenine in collagen-induced arthritis. Front Pharmacol. 2018;9:675.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, et al. Microsomal prostaglandin E2 synthase-1 and its inhibitors: molecular mechanisms and therapeutic significance. Pharmacol Res. 2022;175:105977.

    Article  CAS  PubMed  Google Scholar 

  25. Luo JF, Yao YD, Cheng CS, Lio CK, Liu JX, Huang YF, et al. Sinomenine increases the methylation level at specific GCG site in mPGES-1 promoter to facilitate its specific inhibitory effect on mPGES-1. Biochim Biophys Acta Gene Regul Mech. 2022;1865:194813.

    Article  CAS  PubMed  Google Scholar 

  26. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guo H, Ni M, Xu J, Chen F, Yao Z, Yao Y, et al. Transcriptional enhancement of GBP-5 by BATF aggravates sepsis-associated liver injury via NLRP3 inflammasome activation. FASEB J. 2021;35:e21672.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Lin X, Wang W, Wang W, Cheng S, Huang Y, et al. The proinflammatory role of guanylate-binding protein 5 in inflammatory bowel diseases. Front Microbiol. 2022;13:926915.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perregaux D, Gabel CA. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem. 1994;269:15195–203.

    Article  CAS  PubMed  Google Scholar 

  30. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lordén G, Sanjuán-García I, de Pablo N, Meana C, Alvarez-Miguel I, Pérez-García MT, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med. 2017;214:511–28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li J, Wu YY, Zhou HS, Zhu RL, Yi L, Dong Y, et al. Effect of sinomenine on expression of purinergic receptors a2a and p2x_7 in mouse model and in-vitro. J Guangzhou Univ Tradit Chin Med. 2016;33:97–103.

    CAS  Google Scholar 

  33. Zhang X, Hu L, Ye M. Solvent-induced protein precipitation for drug target discovery. Methods Mol Biol (Clifton, N. J). 2023;2554:35–45.

    Article  Google Scholar 

  34. Zhang X, Wang Q, Li Y, Ruan C, Wang S, Hu L, et al. Solvent-induced protein precipitation for drug target discovery on the proteomic scale. Anal Chem. 2020;92:1363–71.

    Article  CAS  PubMed  Google Scholar 

  35. Orthwein T, Huergo LF, Forchhammer K, Selim KA. Kinetic analysis of a protein-protein complex to determine its dissociation constant (KD) and the effective concentration (EC50) of an interplaying effector molecule using bio-layer interferometry. Bio-Protoc. 2021;11:e4152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang D, Singh A, Wu H, Kroe-Barrett R. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics. Anal Biochem. 2016;508:78–96.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang S, Zhang Y, Zheng JH, Li X, Yao YL, Wu YL, et al. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol Res. 2017;117:82–93.

    Article  CAS  PubMed  Google Scholar 

  38. Miyoshi M, Liu S. Collagen-induced arthritis models. Methods Mol Biol. 2018;1868:3–7.

    Article  CAS  PubMed  Google Scholar 

  39. Fan ZD, Zhang YY, Guo YH, Huang N, Ma HH, Huang H, et al. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Sci Rep. 2016;6:35804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui W, Braun E, Wang W, Tang J, Zheng Y, Slater B, et al. Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins. Proc Natl Acad Sci USA. 2021;118:e2022269118.

  41. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282:2871–9.

    Article  CAS  PubMed  Google Scholar 

  42. Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev. 2019;18:102397.

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Huang Q, Chen Y, Huang Z, Huang Y, Wang Y, et al. The novel FAT4 activator jujuboside A suppresses NSCLC tumorigenesis by activating HIPPO signaling and inhibiting YAP nuclear translocation. Pharmacol Res. 2021;170:105723.

    Article  CAS  PubMed  Google Scholar 

  44. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science. 2012;336:481–5.

    Article  CAS  PubMed  Google Scholar 

  45. Caffrey DR, Fitzgerald KA. Immunology. Select inflammasome assembly. Science. 2012;336:420–1.

    Article  CAS  PubMed  Google Scholar 

  46. Santos JC, Dick MS, Lagrange B, Degrandi D, Pfeffer K, Yamamoto M, et al. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J. 2018;37:e98089.

  47. Cai X, Yao Y, Teng F, Li Y, Wu L, Yan W, et al. The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. Int Immunopharmacol. 2021;101:108297.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.

    Article  CAS  PubMed  Google Scholar 

  49. Barbera-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrin P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release. FASEB J. 2012;26:2951–62.

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Yangyang W, Haisong Z, Ruili Z, Lang Y, Yan D, et al. Effect of sinomenine on expression of purinergic receptors A2A and P2X 7 in mouse model and in-vitro macrophages stimulated by lipopolysaccharide. J Guangzhou Univ Tradit Chin Med. 2016;33:97–103.

    CAS  Google Scholar 

  51. Mesuret G, Engel T, Hessel EV, Sanz-Rodriguez A, Jimenez-Pacheco A, Miras-Portugal MT, et al. P2X7 receptor inhibition interrupts the progression of seizures in immature rats and reduces hippocampal damage. CNS Neurosci Ther. 2014;20:556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan ZD, Zhang YY, Guo YH, Huang N, Ma HH, Huang H, et al. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Sci Rep. 2016;6:35804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saxena C. Identification of protein binding partners of small molecules using label-free methods. Expert Opin Drug Discov. 2016;11:1017–25.

    Article  CAS  PubMed  Google Scholar 

  54. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7.

    Article  PubMed  Google Scholar 

  55. West GM, Tucker CL, Xu T, Park SK, Han X, Yates JR 3rd, et al. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci USA. 2010;107:9078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strickland EC, Geer MA, Tran DT, Adhikari J, West GM, DeArmond PD, et al. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc. 2013;8:148–61.

    Article  CAS  PubMed  Google Scholar 

  57. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meng H, Ma R, Fitzgerald MC. Chemical denaturation and protein precipitation approach for discovery and quantitation of protein-drug interactions. Anal Chem. 2018;90:9249–55.

    Article  CAS  PubMed  Google Scholar 

  59. Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346:1255784.

    Article  PubMed  Google Scholar 

  60. Franken H, Mathieson T, Childs D, Sweetman GM, Werner T, Tögel I, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015;10:1567–93.

    Article  CAS  PubMed  Google Scholar 

  61. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Almqvist H, Axelsson H, Jafari R, Dan C, Mateus A, Haraldsson M, et al. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat Commun. 2016;7:11040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Becher I, Andrés-Pons A, Romanov N, Stein F, Schramm M, Baudin F, et al. Pervasive protein thermal stability variation during the cell cycle. Cell. 2018;173:1495–507.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S, Becher I, et al. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell. 2018;173:260–74.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lyu J, Ye M. Development and application of modification-free methords for the proteomics-based drug target identification. J Chin Mass Spectrom Soc. 2021;42:845–61.

    Google Scholar 

  66. Roberto P, Marinello E, Carlucci F, Tabucchi A, Leoncini R, Pizzichini M. Purine nucleotide metabolism in patients with rheumatoid arthritis. Biochem Soc Trans. 1994;22:242s.

    Article  CAS  PubMed  Google Scholar 

  67. Wang H, Fang K, Wang J, Chang X. Metabolomic analysis of synovial fluids from rheumatoid arthritis patients using quasi-targeted liquid chromatography-mass spectrometry/mass spectrometry. Clin Exp Rheumatol. 2021;39:1307–15.

    Article  PubMed  Google Scholar 

  68. Dewulf JP, Marie S, Nassogne MC. Disorders of purine biosynthesis metabolism. Mol Genet Metab. 2022;136:190–8.

    Article  CAS  PubMed  Google Scholar 

  69. Abdiche Y, Malashock D, Pinkerton A, Pons J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem. 2008;377:209–17.

    Article  CAS  PubMed  Google Scholar 

  70. Ding Z, Li S, Cao X. Microbial transglutaminase separation by pH-responsive affinity precipitation with crocein orange G as the ligand. Appl Biochem Biotechnol. 2015;177:253–66.

    Article  CAS  PubMed  Google Scholar 

  71. Haque M, Singh AK, Ouseph MM, Ahmed S. Regulation of synovial inflammation and tissue destruction by guanylate binding protein 5 in synovial fibroblasts from patients with rheumatoid arthritis and rats with adjuvant-induced arthritis. Arthritis Rheumatol (Hoboken, N. J). 2021;73:943–54.

    Article  CAS  Google Scholar 

  72. Patil PA, Blakely AM, Lombardo KA, Machan JT, Miner TJ, Wang LJ, et al. Expression of PD-L1, indoleamine 2,3-dioxygenase and the immune microenvironment in gastric adenocarcinoma. Histopathology. 2018;73:124–36.

    Article  PubMed  Google Scholar 

  73. Friedman K, Brodsky AS, Lu S, Wood S, Gill AJ, Lombardo K, et al. Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment. Mod Pathol: Off J U S Can Acad Pathol, Inc. 2016;29:528–41.

    Article  CAS  Google Scholar 

  74. Yu X, Jin J, Zheng Y, Zhu H, Xu H, Ma J, et al. GBP5 drives malignancy of glioblastoma via the Src/ERK1/2/MMP3 pathway. Cell Death Dis. 2021;12:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606.

    Article  CAS  PubMed  Google Scholar 

  76. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328.

  77. Liu N, Gao Y, Liu Y, Liu D. GBP5 inhibition ameliorates the progression of lupus nephritis by suppressing NLRP3 inflammasome activation. Immunol Invest. 2023;52:52–66.

    Article  CAS  PubMed  Google Scholar 

  78. Yao J, Shen Q, Huang M, Ding M, Guo Y, Chen W, et al. Screening tumor specificity targeted by arnicolide D, the active compound of Centipeda minima and molecular mechanism underlying by integrative pharmacology. J Ethnopharmacol. 2022;282:114583.

    Article  CAS  PubMed  Google Scholar 

  79. Li Z, Qu X, Liu X, Huan C, Wang H, Zhao Z, et al. GBP5 is an interferon-induced inhibitor of respiratory syncytial virus. J Virol. 2020;94:e01407–20.

  80. Dubyak GR. P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol. 2012;14:1697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arulkumaran N, Unwin RJ, Tam FW. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs. 2011;20:897–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Di Virgilio F, Giuliani AL. Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus? Biomed J. 2016;39:326–38.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol. 2004;240:31–304.

    Article  CAS  PubMed  Google Scholar 

  84. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal. 2011;4:ra12.

    Article  PubMed  Google Scholar 

  85. Montreekachon P, Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Krisanaprakornkit S. Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. J Periodontal Res. 2011;46:327–37.

    Article  CAS  PubMed  Google Scholar 

  86. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun. 2012;3:1034.

    Article  PubMed  Google Scholar 

  87. Janks L, Sharma CVR, Egan TM. A central role for P2X7 receptors in human microglia. J Neuroinflamm. 2018;15:325.

    Article  CAS  Google Scholar 

  88. Souza CO, Santoro GF, Figliuolo VR, Nanini HF, de Souza HS, Castelo-Branco MT, et al. Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim Biophys Acta. 2012;1820:1867–78.

    Article  CAS  PubMed  Google Scholar 

  89. Novak I. Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal. 2008;4:237–53.

    Article  CAS  PubMed  Google Scholar 

  90. Cao F, Hu LQ, Yao SR, Hu Y, Wang DG, Fan YG, et al. P2X7 receptor: A potential therapeutic target for autoimmune diseases. Autoimmun Rev. 2019;18:767–77.

    Article  CAS  PubMed  Google Scholar 

  91. Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol. 2019;234:2095–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao of National Natural Science Fund of China (Project No.: 81929003, 81628016), the 2020 Hunan Province Science and Technology Innovation Key Projects (Project No.: 2020SK1020), and the Sanming Project of Medicine in Shenzhen, Guangdong Province, China (Project No.: SZZYSM202111002).

Author information

Authors and Affiliations

Authors

Contributions

JML: Methodology, Data curation, Formal analysis, Investigation, Validation, and Visualization, Writing original draft. HSD: Methodology, Data curation, Formal analysis, Investigation, Validation, and Visualization. YDY: Methodology, Data curation, Formal analysis, Investigation, Validation, and Visualization. JQH: Methodology, Data curation, Formal analysis, Investigation, Validation, and Visualization. WTW: Methodology, Data curation, Formal analysis, Investigation, Validation, and Visualization. YD: Writing—review and editing. PXW: Writing—review and editing. Liang Liu: Writing—review and editing. ZQL: Writing—review and editing. YX: Conceptualization, Writing—review and editing. Lin-Lin Lu: Conceptualization, Resources and Supervision, Writing—review and editing. HZ: Conceptualization, Funding acquisition, Resources and Supervision, Writing—review and editing. All authors approved the final manuscript.

Corresponding authors

Correspondence to Zhong-qiu Liu, Ying Xie, Lin-lin Lu or Hua Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jm., Deng, Hs., Yao, Yd. et al. Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways. Acta Pharmacol Sin 44, 2504–2524 (2023). https://doi.org/10.1038/s41401-023-01124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01124-4

Keywords

Search

Quick links