Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute spinal cord injury serum biomarkers in human and rat: a scoping systematic review

Abstract

Study design

Scoping systematic review.

Objectives

To summarize the available experimental clinical and animal studies for the identification of all CSF and serum-derived biochemical markers in human and rat SCI models.

Setting

Tehran, Iran.

Methods

In this scoping article, we systematically reviewed the electronic databases of PubMed, Scopus, WOS, and CENTRAL to retrieve current literature assessing the levels of different biomarkers in human and rat SCI models.

Results

A total of 19,589 articles were retrieved and 6897 duplicated titles were removed. The remaining 12,692 studies were screened by their title/abstract and 12,636 were removed. The remaining 56 were considered for full-text assessment, and 11 papers did not meet the criteria, and finally, 45 studies were included. 26 studies were human observational studies comprising 1630 patients, and 19 articles studied SCI models in rats, including 832 rats. Upon reviewing the literature, we encountered a remarkable heterogeneity in terms of selected biomarkers, timing, and method of measurement, studied models, extent, and mechanism of injury as well as outcome assessment measures.

Conclusions

The specific expression and distribution patterns of biomarkers in relation to spinal cord injury (SCI) phases, and their varied concentrations over time, suggest that cerebrospinal fluid (CSF) and blood biomarkers are effective measures for assessing the severity of SCI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary files.

References

  1. Tetreault LA, Karadimas S, Wilson JR, Arnold PM, Kurpad S, Dettori JR, et al. The Natural History of Degenerative Cervical Myelopathy and the Rate of Hospitalization Following Spinal Cord Injury: An Updated Systematic Review. Glob Spine J. 2017;7: 28S–34S.

    Article  Google Scholar 

  2. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Prim. 2017;3: 17018.

    Article  PubMed  Google Scholar 

  3. Kim YH, Ha KY, Kim SI. Spinal Cord Injury and Related Clinical Trials. Clin Orthopedic Surg. 2017;9: 1–9.

    Article  Google Scholar 

  4. Stein DM, Sheth KN. Management of acute spinal cord injury. Continuum. 2015;21: 159–87.

    PubMed  Google Scholar 

  5. Stahel PF, VanderHeiden T, Finn MA. Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care. 2012;18: 651–60.

    Article  PubMed  Google Scholar 

  6. Ydens E, Palmers I, Hendrix S, Somers V. The Next Generation of Biomarker Research in Spinal Cord Injury. Mol Neurobiol. 2017;54: 1482–99.

    Article  CAS  PubMed  Google Scholar 

  7. Mattiassich G, Gollwitzer M, Gaderer F, Blocher M, Osti M, Lill M, et al. Functional Outcomes in Individuals Undergoing Very Early (<5 h) and Early (5-24 h) Surgical Decompression in Traumatic Cervical Spinal Cord Injury: Analysis of Neurological Improvement from the Austrian Spinal Cord Injury Study. J Neurotrauma. 2017;34: 3362–71.

    Article  PubMed  Google Scholar 

  8. Wutte C, Klein B, Becker J, Mach O, Panzer S, Strowitzki M, et al. Earlier Decompression (<8 h) Results in Better Neurological and Functional Outcome after Traumatic Thoracolumbar Spinal Cord Injury. J Neurotrauma. 2019;36: 2020–7.

    Article  PubMed  Google Scholar 

  9. White NH, Black NH. National Spinal Cord Injury Statistical Center, Spinal Cord Injury (SCI) 2016 Facts and Figures at a Glance. J Spinal Cord Med. 2016;39:493–4.

  10. Kirshblum S, Waring W 3rd. Updates for the International Standards for Neurological Classification of Spinal Cord Injury. Phys Med Rehabilit Clin North Am. 2014;25: 505–17, vii.

    Article  Google Scholar 

  11. Du W, Li H, Sun J, Xia Y, Zhu R, Zhang X, et al. The Prognostic Value of Serum Neuron Specific Enolase (NSE) and S100B Level in Patients of Acute Spinal Cord Injury. Med Sci Monit. 2018;24: 4510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts TT, Leonard GR, Cepela DJ. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin Orthop Relat Res. 2017;475: 1499–504.

    Article  PubMed  Google Scholar 

  13. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45: 190–205.

    Article  CAS  PubMed  Google Scholar 

  14. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25: E2.

    Article  PubMed  Google Scholar 

  15. Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, et al. Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: A systematic review. J Neurochem. 2019;149: 317–30.

    Article  CAS  PubMed  Google Scholar 

  16. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5: 463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Badhiwala JH, Wilson JR, Kwon BK, Casha S, Fehlings MG. A Review of Clinical Trials in Spinal Cord Injury Including Biomarkers. J Neurotrauma. 2018;35: 1906–17.

    Article  PubMed  Google Scholar 

  18. Kwon BK, Casha S, Hurlbert RJ, Yong VW. Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clin Chem Lab Med. 2011;49: 425–33.

    Article  CAS  PubMed  Google Scholar 

  19. Hulme CH, Brown SJ, Fuller HR, Riddell J, Osman A, Chowdhury J, et al. The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord. 2017;55: 114–25.

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Streijger F, Wang Y, Lin G, Christie S, Mac-Thiong JM, et al. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Sci Rep. 2016;6: 38718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6: e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, et al. Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord. 2016;54: 579–83.

    Article  CAS  PubMed  Google Scholar 

  23. Ga W. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In 3rd Symposium on Systematic Reviews: Beyond the Basics. Oxford, UK; 2000.

  24. Cao F, Yang XF, Liu WG, Hu WW, Li G, Zheng XJ, et al. Elevation of neuron-specific enolase and S-100beta protein level in experimental acute spinal cord injury. J Clin Neurosci. 2008;15: 541–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ding SQ, Chen J, Wang SN, Duan FX, Chen YQ, Shi YJ, et al. Identification of serum exosomal microRNAs in acute spinal cord injured rats. Exp Biol Med. 2019;244: 1149–61.

    Article  CAS  Google Scholar 

  26. Guo L, Hou J, Zhong J, Liu J, Sun T, Liu H. Association between injury severity and amyloid β protein levels in serum and cerebrospinal fluid in rats with traumatic spinal cord injury. Mol Med Rep. 2017;15: 2241–6.

    Article  CAS  PubMed  Google Scholar 

  27. Hasturk A, Atalay B, Calisaneller T, Ozdemir O, Oruckaptan H, Altinors N. Analysis of serum pro-inflammatory cytokine levels after rat spinal cord ischemia/reperfusion injury and correlation with tissue damage. Turkish Neurosurg. 2009;19: 353–9.

    Google Scholar 

  28. Li XH, Wu F, Zhao F, Huang SL. Fractional anisotropy is a marker in early-stage spinal cord injury. Brain Res. 2017;1672: 44–9.

    Article  CAS  PubMed  Google Scholar 

  29. Loy DN, Sroufe AE, Pelt JL, Burke DA, Cao QL, Talbott JF, et al. Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100beta. Neurosurgery. 2005;56: 391–7.

    Article  PubMed  Google Scholar 

  30. Ma J, Novikov LN, Karlsson K, Kellerth JO, Wiberg M. Plexus avulsion and spinal cord injury increase the serum concentration of S-100 protein: an experimental study in rats. Scand J Plast Reconstruct Surg Hand Surg. 2001;35: 355–9.

    Article  CAS  Google Scholar 

  31. Ma Z, Dong Q, Lyu B, Wang J, Quan Y, Gong S. The expression of bradykinin and its receptors in spinal cord ischemia-reperfusion injury rat model. Life Sci. 2019;218: 340–5.

    Article  CAS  PubMed  Google Scholar 

  32. Ur K, Demiroz S, Bengu AS, Ulucan A, Gergin OO, Kizmazoglu C, et al. Serum endocan level and the severity of spinal cord injury. Bratisl Lekarske listy. 2018;119: 298–301.

    CAS  Google Scholar 

  33. Wang CX, Olschowka JA, Wrathall JR. Increase of interleukin-1beta mRNA and protein in the spinal cord following experimental traumatic injury in the rat. Brain Res. 1997;759: 190–6.

    Article  CAS  PubMed  Google Scholar 

  34. Wu F, Ding XY, Li XH, Gong MJ, An JQ, Huang SL. Correlation between elevated inflammatory cytokines of spleen and spleen index in acute spinal cord injury. J Neuroimmunol. 2020;344: 577264.

    Article  CAS  PubMed  Google Scholar 

  35. Zong S, Zeng G, Fang Y, Peng J, Tao Y, Li K, et al. The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators Inflamm. 2014;2014: 786947.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caprelli MT, Mothe AJ, Tator CH. Hyperphosphorylated Tau as a Novel Biomarker for Traumatic Axonal Injury in the Spinal Cord. J Neurotrauma. 2018;35: 1929–41.

    Article  PubMed  Google Scholar 

  37. Hong J, Chang A, Zavvarian MM, Wang J, Liu Y, Fehlings MG. Level-Specific Differences in Systemic Expression of Pro- and Anti-Inflammatory Cytokines and Chemokines after Spinal Cord Injury. Int J Mol Sci. 2018;19: 2167.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mukhamedshina YO, Akhmetzyanova ER, Martynova EV, Khaiboullina SF, Galieva LR, Rizvanov AA. Systemic and Local Cytokine Profile following Spinal Cord Injury in Rats: A Multiplex Analysis. Front Neurol. 2017;8: 581.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tanhoffer RA, Yamazaki RK, Nunes EA, Pchevozniki AI, Pchevozniki AM, Nogata C, et al. Glutamine concentration and immune response of spinal cord-injured rats. J Spinal Cord Med. 2007;30: 140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang CX, Nuttin B, Heremans H, Dom R, Gybels J. Production of tumor necrosis factor in spinal cord following traumatic injury in rats. J Neuroimmunol. 1996;69: 151–6.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Z, Bramlett HM, Moghieb A, Yu D, Wang P, Lin F, et al. Temporal Profile and Severity Correlation of a Panel of Rat Spinal Cord Injury Protein Biomarkers. Mol Neurobiol. 2018;55: 2174–84.

    Article  CAS  PubMed  Google Scholar 

  42. Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, et al. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochemical Biophysical Res Commun. 2005;336: 1268–77.

    Article  CAS  Google Scholar 

  43. Ahadi R, Khodagholi F, Daneshi A, Vafaei A, Mafi AA, Jorjani M. Diagnostic Value of Serum Levels of GFAP, pNF-H, and NSE Compared With Clinical Findings in Severity Assessment of Human Traumatic Spinal Cord Injury. Spine. 2015;40: E823–30.

    Article  PubMed  Google Scholar 

  44. Bank M, Stein A, Sison C, Glazer A, Jassal N, McCarthy D, et al. Elevated circulating levels of the pro-inflammatory cytokine macrophage migration inhibitory factor in individuals with acute spinal cord injury. Arch Phys Med Rehabilit. 2015;96: 633–44.

    Article  Google Scholar 

  45. Biglari B, Büchler A, Swing T, Biehl E, Roth HJ, Bruckner T, et al. Increase in soluble CD95L during subacute phases after human spinal cord injury: a potential therapeutic target. Spinal Cord. 2013;51: 183–7.

    Article  CAS  PubMed  Google Scholar 

  46. Biglari B, Büchler A, Swing T, Child C, Biehl E, Reitzel T, et al. Serum sCD95L concentration in patients with spinal cord injury. J Int Med Res. 2015;43: 250–6.

    Article  CAS  PubMed  Google Scholar 

  47. Biglari B, Swing T, Child C, Büchler A, Westhauser F, Bruckner T, et al. A pilot study on temporal changes in IL-1β and TNF-α serum levels after spinal cord injury: the serum level of TNF-α in acute SCI patients as a possible marker for neurological remission. Spinal Cord. 2015;53: 510–4.

    Article  CAS  PubMed  Google Scholar 

  48. Ferbert T, Child C, Graeser V, Swing T, Akbar M, Heller R, et al. Tracking Spinal Cord Injury: Differences in Cytokine Expression of IGF-1, TGF- B1, and sCD95l Can Be Measured in Blood Samples and Correspond to Neurological Remission in a 12-Week Follow-Up. J Neurotrauma. 2017;34: 607–14.

    Article  PubMed  Google Scholar 

  49. Hassanshahi G, Amin M, Shunmugavel A, Vazirinejad R, Vakilian A, Sanji M, et al. Temporal expression profile of CXC chemokines in serum of patients with spinal cord injury. Neurochemistry Int. 2013;63: 363–7.

    Article  CAS  Google Scholar 

  50. Hayakawa K, Okazaki R, Ishii K, Ueno T, Izawa N, Tanaka Y, et al. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord. 2012;50: 493–6.

    Article  CAS  PubMed  Google Scholar 

  51. Heller RA, Seelig J, Bock T, Haubruck P, Grützner PA, Schomburg L, et al. Relation of selenium status to neuro-regeneration after traumatic spinal cord injury. J Trace Elem Med Biol. 2019;51: 141–9.

    Article  CAS  PubMed  Google Scholar 

  52. Heller RA, Raven TF, Swing T, Kunzmann K, Daniel V, Haubruck P, et al. CCL-2 as a possible early marker for remission after traumatic spinal cord injury. Spinal Cord. 2017;55: 1002–9.

    Article  CAS  PubMed  Google Scholar 

  53. Jin GX, Li L, Cui SQ, Duan JZ, Wang H. Persistent hypoalbuminemia is a predictor of outcome in cervical spinal cord injury. Spine J. 2014;14: 1902–8.

    Article  PubMed  Google Scholar 

  54. Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A, et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry. 2015;86: 273–9.

    Article  PubMed  Google Scholar 

  55. Lee SJ, Kim CW, Lee KJ, Choe JW, Kim SE, Oh JH, et al. Elevated serum S100B levels in acute spinal fracture without head injury. Emerg Med J. 2010;27: 209–12.

    Article  PubMed  Google Scholar 

  56. Li H, Zhao D, Zhang M, editors. Temporal expression MicroRNA-21 in serum of patients with spinal cord injury. International conference on biomedical and biological engineering. Proceedings of the 2016 International Conference on Biomedical and Biological Engineering. Atlantis Press; 2016. pp. 116–22.

  57. Moghaddam A, Child C, Bruckner T, Gerner HJ, Daniel V, Biglari B. Posttraumatic inflammation as a key to neuroregeneration after traumatic spinal cord injury. Int J Mol Sci. 2015;16: 7900–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moghaddam A, Heller R, Daniel V, Swing T, Akbar M, Gerner HJ, et al. Exploratory study to suggest the possibility of MMP-8 and MMP-9 serum levels as early markers for remission after traumatic spinal cord injury. Spinal Cord. 2017;55: 8–15.

    Article  CAS  PubMed  Google Scholar 

  59. Moghaddam A, Sperl A, Heller R, Gerner HJ, Biglari B. sCD95L in serum after spinal cord injury. Spinal Cord. 2016;54: 957–60.

    Article  CAS  PubMed  Google Scholar 

  60. Paczkowska E, Rogińska D, Pius-Sadowska E, Jurewicz A, Piecyk K, Safranow K, et al. Evidence for proangiogenic cellular and humoral systemic response in patients with acute onset of spinal cord injury. J Spinal Cord Med. 2015;38: 729–44.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Papatheodorou A, Stein A, Bank M, Sison CP, Gibbs K, Davies P, et al. High-Mobility Group Box 1 (HMGB1) Is Elevated Systemically in Persons with Acute or Chronic Traumatic Spinal Cord Injury. J neurotrauma. 2017;34: 746–54.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Singh A, Kumar V, Ali S, Mahdi AA, Srivastava RN. Phosphorylated neurofilament heavy: A potential blood biomarker to evaluate the severity of acute spinal cord injuries in adults. Int J Crit Illn Inj Sci. 2017;7: 212–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang HC, Lin YT, Hsu SY, Tsai NW, Lai YR, Su BY, et al. Serial plasma DNA levels as predictors of outcome in patients with acute traumatic cervical spinal cord injury. J Transl Med. 2019;17: 329.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wolf H, Krall C, Pajenda G, Leitgeb J, Bukaty AJ, Hajdu S, et al. Alterations of the biomarker S-100B and NSE in patients with acute vertebral spine fractures. Spine J. 2014;14: 2918–22.

    Article  PubMed  Google Scholar 

  65. Xu L, Zhang Y, Zhang R, Zhang H, Song P, Ma T, et al. Elevated plasma BDNF levels are correlated with NK cell activation in patients with traumatic spinal cord injury. Int Immunopharmacol. 2019;74: 105722.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao P, Wang S, Zhou Y, Zheng H, Zhao G. MicroRNA-185 regulates spinal cord injuries induced by thoracolumbar spine compression fractures by targeting transforming growth factor-β1. Exp Therapeutic Med. 2017;13: 1127–32.

    Article  CAS  Google Scholar 

  67. Bickenbach J, Shakespeare T, von Groote PM, World Health Organization, International Spinal Cord Society. International perspectives on spinal cord injury. World Health Organization; 2013. online source: https://www.who.int/publications/i/item/international-perspectives-on-spinal-cord-injury.

  68. Grassner L, Maier D. Impact of surgery on the outcome after spinal cord injury - current concepts and an outlook into the future. Neural Regen Res. 2016;11: 1928–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fehlings MG, Vaccaro A, Wilson JR, Singh A, Cadotte DW, Harrop JS, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PloS One. 2012;7: e32037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114: 25–57.

    Article  PubMed  Google Scholar 

  71. Rodrigues LF, Moura-Neto V. Biomarkers in Spinal Cord Injury: from Prognosis to Treatment. Mol Neurobiol. 2018;55: 6436–48. TCLS ES

    Article  CAS  PubMed  Google Scholar 

  72. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci. 2016;10: 98.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75: 15–26.

    Article  CAS  PubMed  Google Scholar 

  74. Winter B, Pattani H, Temple E. Spinal cord injury. Anaesth Intensive Care Med. 2014;15: 424–7.

    Article  Google Scholar 

  75. Haider T, Höftberger R, Rüger B, Mildner M, Blumer R, Mitterbauer A, et al. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Exp Neurol. 2015;267: 230–42.

    Article  CAS  PubMed  Google Scholar 

  76. Denslow N, Michel ME, Temple MD, Hsu CY, Saatman K, Hayes RL. Application of proteomics technology to the field of neurotrauma. J Neurotrauma. 2003;20: 401–7.

    Article  PubMed  Google Scholar 

  77. Wang KK, Ottens A, Haskins W, Liu MC, Kobeissy F, Denslow N, et al. Proteomics studies of traumatic brain injury. Int Rev Neurobiol. 2004;61: 215–40.

    Article  CAS  PubMed  Google Scholar 

  78. Alemi-Neissi A, Rosselli FB, Zoccolan D. Multifeatural shape processing in rats engaged in invariant visual object recognition. J Neurosci. 2013;33: 5939–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pouw MH, Kwon BK, Verbeek MM, Vos PE, van Kampen A, Fisher CG, et al. Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord. 2014;52: 428–33.

    Article  CAS  PubMed  Google Scholar 

  80. Marquardt G, Setzer M, Seifert V. Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100 beta. Neurosurgery. 2006;58: E590.

    Article  PubMed  Google Scholar 

  81. Dalkilic T, Fallah N, Noonan VK, Salimi Elizei S, Dong K, Belanger L, et al. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers. J Neurotrauma. 2018;35: 435–45.

    Article  PubMed  Google Scholar 

  82. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma. 2010;27: 669–82.

    Article  PubMed  Google Scholar 

  83. Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, et al. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg. 2015;83: 867–78.

    Article  PubMed  Google Scholar 

  84. Leister I, Haider T, Mattiassich G, Kramer JLK, Linde LD, Pajalic A, et al. Biomarkers in Traumatic Spinal Cord Injury-Technical and Clinical Considerations: A Systematic Review. Neurorehabilit Neural Repair. 2020;34: 95–110.

    Article  Google Scholar 

  85. Faridaalee G, Keyghobadi Khajeh F. Serum and Cerebrospinal Fluid Levels of S-100β Is A Biomarker for Spinal Cord Injury; a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2019;7: e19.

    PubMed  PubMed Central  Google Scholar 

  86. Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol. 2003;462: 223–40.

    Article  PubMed  Google Scholar 

  87. Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS. Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol. 2003;184: 313–25.

    Article  CAS  PubMed  Google Scholar 

  88. Blight AR, Leroy EC Jr., Heyes MP. Quinolinic acid accumulation in injured spinal cord: time course, distribution, and species differences between rat and guinea pig. J Neurotrauma. 1997;14: 89–98.

    Article  CAS  PubMed  Google Scholar 

  89. Blight AR, Tuszynski MH. Clinical trials in spinal cord injury. J Neurotrauma. 2006;23: 586–93.

    Article  PubMed  Google Scholar 

  90. Tuszynski MH, Grill R, Jones LL, McKay HM, Blesch A. Spontaneous and augmented growth of axons in the primate spinal cord: effects of local injury and nerve growth factor-secreting cell grafts. J Comp Neurol. 2002;449: 88–101.

    Article  CAS  PubMed  Google Scholar 

  91. Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med. 2007;13: 561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Shahid Beheshti University of Medical Science for their help and support.

Author information

Authors and Affiliations

Authors

Contributions

SS was responsible for: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing. SR was responsible for: Data curation; Roles/Writing - original draft; MAH was responsible for: Conceptualization; Roles/Writing - original draft; Writing - review & editing. SMP was responsible for: Data curation; Roles/Writing - original draft; ML was responsible for: Data curation; Roles/Writing - original draft; DJ was responsible for: Data curation; Roles/Writing - original draft; SA was responsible for: Conceptualization; Project administration; Resources; Supervision; Writing - review & editing.

Corresponding author

Correspondence to Sina Asaadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The present study received the approval of the Ethics Committee of Shahid Beheshti University of Medical Sciences with reference number No: IR.SBMU.RETECH.REC.1399.478.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shool, S., Rahmani, S., Habibi, M.A. et al. Acute spinal cord injury serum biomarkers in human and rat: a scoping systematic review. Spinal Cord Ser Cases 10, 21 (2024). https://doi.org/10.1038/s41394-024-00636-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41394-024-00636-3

Search

Quick links