Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of nutritional interventions in the prevention and treatment of chronic lung disease of prematurity

Abstract

Chronic lung disease of prematurity or bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Nutrition may affect incidence and severity of BPD. In this context, the Section on Nutrition, Gastroenterology and Metabolism, the Pulmonary Section of the European Society for Paediatric Research (ESPR) and SPR have joined forces to review the current knowledge on nutritional issues related to BPD. The aim of this narrative review is to discuss the clinical implications for nutritional practice. Nutrient deficiencies may influence pathogenesis of BPD. Adequate nutrition and growth can play a crucial role in the prevention of and recovery from BPD. Optimal nutrition strategy is an important principle, especially in the early postnatal period. As optimal energy intake in infants at risk of BPD or with evolving BPD is not yet defined, further research with well-designed studies on nutritional strategies for preterm infants with BPD is urgently needed.

Impact

  • Based on current evidence it seems reasonable to recommend that BPD diagnosed infants should receive an energy supply ranging from 120 to 150 Kcal/kg/d.

  • Exclusive MOM feed with adequate fortification should be encouraged as this is associated with a significant reduction in the risk of BPD.

  • Suboptimal nutritional delivery is often seen in preterm infants with BPD compared to controls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 314, 1039–1051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jobe, A. H. Mechanisms of lung injury and bronchopulmonary dysplasia. Am. J. Perinatol. 33, 1076–1078 (2016).

    Article  PubMed  Google Scholar 

  3. Paananen, R. et al. Blood cytokines during the perinatal period in very preterm infants: relationship of inflammatory response and bronchopulmonary dysplasia. J. Pediatr. 154, 39–43e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Heras, A., Chambers, R., Solomon, Z., Blatt, L. & Martin, C. R. Nutrition-based implications and therapeutics in the development and recovery of bronchopulmonary dysplasia. Semin Perinatol. 47, 1518182023 (2023).

    Article  Google Scholar 

  5. Correani, A. et al. Reduced pulmonary oxygen diffusion at 36 weeks of postmenstrual age in small-for-gestational-age preterm infants of less than 32 weeks without bronchopulmonary dysplasia. Pediatr. Pulmonol. 58, 3054–3062 (2023).

    Article  PubMed  Google Scholar 

  6. Morrow, L. A. et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. Am. J. Respir. Crit. Care Med. 196, 364–374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bose, C. et al. Extremely low gestational age newborn study investigators. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 124, e450–e458 (2009).

    Article  PubMed  Google Scholar 

  8. Polin, R., Abman, S.H., Rowitch, D.H., Benitz, W. Fetal and Neonatal Physiology. 6th edn. (Elsevier, Philadelphia, 2022).

  9. Ehrenkranz, R. A. et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117, 1253–1261 (2006).

    Article  PubMed  Google Scholar 

  10. Frank, L. & Sosenko, I. R. Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia. Am. Rev. Respir. Dis. 138, 725–729 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Poindexter, B. B. & Martin, C. R. Impact of nutrition on bronchopulmonary dysplasia. Clin. Perinatol. 42, 797–806 (2015).

    Article  PubMed  Google Scholar 

  12. Uberos, J., Lardón-Fernández, M., Machado-Casas, I., Molina-Oya, M. & Narbona-López, E. Nutrition in extremely low birth weight infants: Impact on bronchopulmonary dysplasia. Minerva Paediatr. 68, 419–426 (2016).

    Google Scholar 

  13. Thiess, T. et al. Correlation of early nutritional supply and development of bronchopulmonary dysplasia in preterm infants <1000 g. Front Pediatr. 9, 741365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klevebro, S. et al. Early energy and protein intakes and associations with growth, BPD, and ROP in extremely preterm infants. Clin. Nutr. 38, 1289–1295 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Atkinson, S. A. Special nutritional needs of infants for prevention of and recovery from bronchopulmonary dysplasia. J. Nutr. 131, 942S–946S (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Arigliani, M., Spinelli, A. M., Liguoro, I. & Cogo, P. Nutrition and lung growth. Nutrients 10, 919 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oh, W. et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J. Pediatr. 147, 786–790 (2005).

    Article  PubMed  Google Scholar 

  18. Rocha, G., Guimarães, H. & Pereira-da-Silva, L. The role of nutrition in the prevention and management of bronchopulmonary dysplasia: a literature review and clinical approach. Int J. Environ. Res Public Health 18, 6245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Principi, N., Di Pietro, G. M. & Esposito, S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J. Transl. Med. 16, 1–13 (2018).

    Article  Google Scholar 

  20. Embleton, N. D. et al. Enteral nutrition in preterm infants (2022): a position paper from the ESPGHAN committee on nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 76, 248–268 (2023).

    Article  PubMed  Google Scholar 

  21. Johnson, M. J. et al. Research priorities in pediatric parenteral nutrition: a consensus and perspective from ESPGHAN/ESPEN/ESPR/CSPEN. Pediatr. Res. 92, 61–70 (2022).

    Article  PubMed  Google Scholar 

  22. Hamosh, M. Lipid metabolism in pediatric nutrition. Pediatr. Clin. North Am. 42, 839–859 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Giretti, I. et al. Hypertriglyceridemia and lipid tolerance in preterm infants with a birth weight of less than 1250 g on routine parenteral nutrition. Clin. Nutr. 40, 4444–4448 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Biagetti, C. et al. Double blind exploratory study on de novo lipogenesis in preterm infants on parenteral nutrition with a lipid emulsion containing 10% fish oil. Clin. Nutr. 35, 337–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Correani, A. et al. Oxygen saturation to fraction of inspired oxygen ratio in preterm infants on routine parenteral nutrition with conventional or fish oil containing lipid emulsions. Pediatr. Pulmonol. 55, 2377–2382 (2020).

    Article  PubMed  Google Scholar 

  26. Collins, C. T. et al. Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants. N. Engl. J. Med 376, 1245–1255 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Spiegler, J. et al. Does breastmilk influence the development of bronchopulmonary dysplasia? J. Pediatr. 169, 76–80.e4 (2016).

    Article  PubMed  Google Scholar 

  28. Villamor-Martínez, E., Pierro, M., Cavallaro, G., Mosca, F. & Villamor, E. Mother’s own milk and bronchopulmonary dysplasia: a systematic review and meta-analysis. Front Pediatr. 7, 224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang, J. et al. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal Ed. 104, F128–F136 (2019).

    Article  PubMed  Google Scholar 

  30. Xu, Y. et al. Dose-dependent effect of human milk on Bronchopulmonary dysplasia in very low birth weight infants. BMC Pediatr. 20, 522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fonseca, L. T., Senna, D. C., Silveira, R. C. & Procianoy, R. S. Association between breast milk and bronchopulmonary dysplasia: a single center observational study. Am. J. Perinatol. 7, 264–269 (2017).

    Google Scholar 

  32. Biniwale, M. A. & Ehrenkranz, R. A. The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol. 30, 200–208 (2006).

    Article  PubMed  Google Scholar 

  33. Bauer, J., Maier, K., Muehlbauer, B., Poeschl, J. & Linderkamp, O. Energy expenditure and plasma catecholamines in preterm infants with mild chronic lung disease. Early Hum. Dev. 72, 147–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Lima, P. A. T. et al. Energy expenditure and body composition in infants with bronchopulmonary dysplasia at term age. Eur. J. Pediatr. 181, 3039–3047 (2022).

    Article  PubMed  Google Scholar 

  35. Bauer, S. E., Huff, K. A., Vanderpool, C. P. B., Rose, R. S. & Cristea, A. I. Growth and nutrition in children with established bronchopulmonary dysplasia: a review of the literature. Nutr. Clin. Pr. 37, 282–298 (2022).

    Article  Google Scholar 

  36. Giannì, M. L. et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: a prospective non-randomised interventional cohort study. BMC Pediatr. 14, 235 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miller, A. N., Curtiss, J., Taylor, S. N., Backes, C. H. & Kielt, M. J. A review and guide to nutritional care of the infant with established bronchopulmonary dysplasia. J. Perinat. 43, 402–410 (2023).

    Article  Google Scholar 

  38. Jensen, E. A. et al. Individualising care in severe bronchopulmonary dysplasia: a series of N-of-1 trials comparing transpyloric and gastric feeding. Arch. Dis. Child Fetal Neonatal Ed. 105, 399–404 (2020).

    Article  PubMed  Google Scholar 

  39. Crawford, M. A. et al. The imperative of arachidonic acid in human reproduction. Prog. Lipid Res. 91, 101222 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Lapillonne, A., Eleni dit Trolli, S. & Kermorvant-Duchemin, E. Postnatal docosahexaenoic acid deficiency is an inevitable consequence of current recommendations and practice in preterm infants. Neonatology 98, 397–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Leuti, A., Maccarrone, M. & Chiurchiù, V. Proresolving lipid mediators: endogenous modulators of oxidative stress. Oxid. Med Cell Longev. 18, 8107265 (2019).

    Google Scholar 

  42. Martin, C. R. et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 159, 743–749e1-2 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manley, B. J. et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics 128, e71–e77 (2011).

    Article  PubMed  Google Scholar 

  44. Marc, I. et al. Effect of maternal docosahexaenoic acid supplementation on bronchopulmonary dysplasia-free survival in breastfed preterm infants: a randomized clinical trial. JAMA 324, 157–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Wendel, K. et al. Effect of arachidonic and docosahexaenoic acid supplementation on respiratory outcomes and neonatal morbidities in preterm infants. Clin. Nut 42, 22–28 (2023).

    Article  CAS  Google Scholar 

  46. Ryan, A. & Godson, C. Lipoxins: regulators of resolution. Curr. Opin. Pharm. 10, 166–172 (2010).

    Article  CAS  Google Scholar 

  47. Martin, C. R. et al. Resolvin D1 and lipoxin A4 improve alveolarization and normalize septal wall thickness in a neonatal murine model of hyperoxia-induced lung injury. PLoS One 9, e98773 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Perrotta, S. et al. Vitamin A and infancy. Biochemical, functional, and clinical aspects. Vitam. Hormones 66, 457–591 (2003).

    CAS  Google Scholar 

  49. Biesalski, H. K. & Nohr, D. Importance of vitamin-A for lung function and development. Mol. Asp. Med. 24, 431–440 (2003).

    Article  CAS  Google Scholar 

  50. Massaro, D. & Massaro, G. D. Lung development, lung function, and retinoids. N. Engl. J. Med. 362, 1829–1831 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Shenai, J. P. Vitamin A supplementation in very low birth weight neonates: rationale and evidence. Pediatrics 104, 1369–1374 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Blaner, W. S., Shmarakov, I. O. & Traber, M. G. Vitamin A and Vitamin E: will the real antioxidant please stand up? Annu Rev. Nutr. 41, 105–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Agostoni, C. et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 50, 85–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Rossholt, M. E. et al. Vitamin A status in preterm infants is associated with inflammation and dexamethasone exposure. Nutrients 15, 441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Darlow, B. A., Graham, P. J. & Rojas-Reyes, M. X. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 22, CD000501 (2016).

    Google Scholar 

  56. Mactier, H. Vitamin A for preterm infants; where are we now? Semin. Fetal Neonatal Med. 18, 166–171 (2013).

    Article  PubMed  Google Scholar 

  57. Inder, T. E., Graham, P. J., Winterbourn, C. C., Austin, N. C. & Darlow, B. A. Plasma vitamin A levels in the very low birthweight infant-relationship to respiratory outcome. Early Hum. Dev. 52, 155–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Spears, K., Cheney, C. & Zerzan, J. Low plasma retinol concentrations increase the risk of developing bronchopulmonary dysplasia and long-term respiratory disability in very-low-birth-weight infants. Am. J. Clin. Nutr. 80, 1589–1594 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Phattraprayoon, N., Ungtrakul, T., Soonklang, K. & Susantitaphong, P. Oral vitamin A supplementation in preterm infants to improve health outcomes: A systematic review and meta-analysis. PLoS One 17, e0265876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rakshasbhuvankar, A. A., Pillow, J. J., Simmer, K. N. & Patole, S. K. Vitamin A supplementation in very-preterm or very-low-birth-weight infants to prevent morbidity and mortality: a systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 114, 2084–2096 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Rakshasbhuvankar, A. A. et al. Enteral Vitamin A for reducing severity of bronchopulmonary dysplasia: a randomized trial. Pediatrics 147, e2020009985 (2021).

    Article  PubMed  Google Scholar 

  62. Basu, S., Khanna, P., Srivastava, R. & Kumar, A. Oral vitamin A supplementation in very low birth weight neonates: a randomized controlled trial. Eur. J. Pediatr. 178, 1255–1265 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Sun, H., Cheng, R. & Wang, Z. Early vitamin a supplementation improves the outcome of retinopathy of prematurity in extremely preterm infants. Retina 40, 1176–1184 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Majerus, P. W. Inositol phosphate biochemistry. Annu Rev. Biochem. 61, 225–250 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Chatree, S., Thongmaen, N., Tantivejkul, K., Sitticharoon, C. & Vucenik, I. Role of inositols and inositol phosphates in energy metabolism. Molecules 25, 5079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Russo, M., Forte, G., Montanino Oliva, M., Laganà, A. S. & Unfer, V. Melatonin and myo-inositol: supporting reproduction from the oocyte to birth. Int J. Mol. Sci. 22, 8433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hallman, M. & Epstein, B. L. Role of myo-inositol in the synthesis of phosphatidylglycerol and phosphatidylinositol in the lung. Biochem Biophys. Res Commun. 92, 1151–1159 (1980).

    Article  CAS  PubMed  Google Scholar 

  68. Guarner, V., Tordet, C. & Bourbon, J. R. Effects of maternal protein-calorie malnutrition on the phospholipid composition of surfactant isolated from fetal and neonatal rat lungs. Compensation by inositol and lipid supplementation. Pediatr. Res 31, 629–635 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Bromberger, P. & Hallman, M. Myoinositol in small preterm infants: relationship between intake and serum concentration. J. Pediatr. Gastroenterol. Nutr. 5, 455–458 (1986).

    Article  CAS  PubMed  Google Scholar 

  70. Brion, L. P. et al. Blood myo-inositol concentrations in preterm and term infants. J. Perinatol. 41, 247–254 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Nilsson, A. K. et al. Longitudinal serum metabolomics in extremely premature infants: relationships with gestational age, nutrition, and morbidities. Front Neurosci. 16, 830884 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hallman, M., Arjomaa, P. & Hoppu, K. Inositol supplementation in respiratory distress syndrome: relationship between serum concentration, renal excretion, and lung effluent phospholipids. J. Pediatr. 110, 604–610 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Phelps, D. L. et al. Safety and pharmacokinetics of multiple dose myo-inositol in preterm infants. Pediatr. Res 80, 209–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hallman, M., Järvenpää, A. L. & Pohjavuori, M. Respiratory distress syndrome and inositol supplementation in preterm infants. Arch. Dis. Child 61, 1076–1083 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hallman, M., Bry, K., Hoppu, K., Lappi, M. & Pohjavuori, M. Inositol supplementation in premature infants with respiratory distress syndrome. N. Engl. J. Med 326, 1233–1239 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Friedman, C. A. et al. Relationship between serum inositol concentration and development of retinopathy of prematurity: a prospective study. J. Pediatr. Ophthalmol. Strabismus 37, 79–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Phelps, D. L. et al. Effects of Myo-inositol on Type 1 retinopathy of prematurity among preterm infants <28 Weeks’ gestational age: a randomized clinical trial. JAMA 320, 1649–1658 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Howlett, A., Ohlsson, A. & Plakkal, N. Inositol in preterm infants at risk for or having respiratory distress syndrome. Cochrane Database Syst. Rev. 7, CD000366 (2019).

    PubMed  Google Scholar 

  79. Lingappan, K., Arunachalam, A. & Pammi, M. Lactoferrin and the newborn: current perspectives. Expert Rev. Anti Infect. Ther. 11, 695–707 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Faust, K. B. et al. Lactoferrin and human neutrophil protein (HNP) 1-3 levels during the neonatal period in preterm infants. Front Pediatr. 10, 909176 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Revenis, M. E. & Kaliner, M. A. Lactoferrin and lysozyme deficiency in airway secretions: association with the development of bronchopulmonary dysplasia. J. Pediatr. 121, 262–270 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Gao, Y. et al. Enteral lactoferrin supplementation for preventing sepsis and necrotizing enterocolitis in preterm infants: a meta‑analysis with trial sequential analysis of randomized controlled trials. Front Pharm. 11, 11862020 (2020).

    Article  Google Scholar 

  83. Qu, Y., Guo, S., Liu, Y., Wang, G. & Wu, H. Association between probiotics and bronchopulmonary dysplasia in preterm infants. Sci. Rep. 11, 17060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No financial assistance was received in support of the study.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the study’s conception and design. Literature search performed in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) and the Cochrane Library (http://www.cochranelibrary.com/) were performed by A.G. Each section was written by a separate author. Leif D. Nelin, Ana Sánchez, and Minesh Khashu provided important scientific contribution. Miguel Saenz de Pipaon drafted the manuscript. All authors commented on previous versions of the manuscript and approved the final manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. All the members of the ESPR Nutrition council members reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Miguel Saenz de Pipaon or Sissel Moltu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenz de Pipaon, M., Nelin, L.D., Gehred, A. et al. The role of nutritional interventions in the prevention and treatment of chronic lung disease of prematurity. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03133-3

This article is cited by

Search

Quick links