Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Impact of postnatal steroids on peripheral avascular retina and severity of retinopathy of prematurity

Abstract

Background

We investigated the role of postnatal steroids on the severity of retinopathy of prematurity (ROP) and its impact on peripheral avascular retina (PAR).

Methods

A retrospective cohort study of infants born at ≤32 weeks gestation and/or birth weight ≤1500 g. Demographics, the dose and duration of steroid treatment, and age when full retinal vascularization occurred were collected. The primary outcomes were the severity of ROP and time to full vascularization of the retina.

Results

A total of 1695 patients were enrolled, 67% of whom received steroid therapy. Their birth weight was 1142 ± 396 g and gestational age was 28.6 ± 2.7 weeks. The total hydrocortisone-equivalent dose prescribed was 28.5 ± 74.3 mg/kg. The total days of steroid treatment were 8.9 ± 35.1 days. After correction for major demographic differences, infants who received a higher cumulative dose of steroids for a longer duration had a significantly increased incidence of severe ROP and PAR (P < 0.001). For each day of steroid treatment, there was a 3.2% increase in the hazard of the severe form of ROP (95% CI: 1.022–1.043) along with 5.7% delay in achieving full retinal vascularization (95% CI: 1.04–1.08) (P < 0.001).

Conclusion

Cumulative dose and duration of postnatal steroid use were independently associated with the severity of ROP and PAR. Thus, postnatal steroids should be used very prudently.

Impact

  • We report ROP outcomes in a large cohort of infants from two major healthcare systems where we have studied the impact of postnatal steroids on the severity of ROP, growth, and development of retinal vessels.

  • After correcting our data for three major outcome measures, we show that high-dose postnatal steroids used for a prolonged duration of time are independently associated with severe ROP and delay in retinal vascularization.

  • Postnatal steroids impact the visual outcomes of VLBW infants significantly, so their clinical use needs to be moderated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recruitment of study subjects.
Fig. 2: Kaplan–Meir curve showing time taken for full retinal vascularization in steroid-exposed neonates (red) versus unexposed neonates (blue).
Fig. 3: Relationship between total hydrocortisone dose and total days on steroids with corrected gestational age when full retinal vascularization occurred.

Similar content being viewed by others

Data availability

The authors agree to share deidentified patient data and statistical analysis on request by other investigators after obtaining permission from each healthcare system. Data will be made available by the corresponding author.

References

  1. Magro Malosso, E. R., Saccone, G., Simonetti, B., Squillante, M. & Berghella, V. US trends in abortion and preterm birth. J. Matern Fetal Neonatal Med. 31, 2463–2467 (2018).

    Article  PubMed  Google Scholar 

  2. Bell, E. F. et al. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 327, 248–263 (2022).

    Article  PubMed  Google Scholar 

  3. Ferre, C., Callaghan, W., Olson, C., Sharma, A. & Barfield, W. Effects of maternal age and age-specific preterm birth rates on overall preterm birth rates – United States, 2007 and 2014. MMWR Morb. Mortal. Wkly Rep. 65, 1181–1184 (2016).

    Article  PubMed  Google Scholar 

  4. Chiang, M. F. et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 128, e51–e68 (2021).

    Article  PubMed  Google Scholar 

  5. Fernandez, E. F. & Watterberg, K. L. Relative adrenal insufficiency in the preterm and term infant. J. Perinatol. 29, S44–S49 (2009).

    Article  PubMed  Google Scholar 

  6. Quintos, J. B. & Boney, C. M. Transient adrenal insufficiency in the premature newborn. Curr. Opin. Endocrinol. Diabetes Obes. 17, 8 (2010).

    Article  PubMed  Google Scholar 

  7. Ng, P. C. et al. Transient adrenocortical insufficiency of prematurity and systemic hypotension in very low birthweight infants. Arch. Dis. Child Fetal Neonatal Ed. 89, F119–F126 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng, P. C. et al. Refractory hypotension in preterm infants with adrenocortical insufficiency. Arch. Dis. Child Fetal Neonatal Ed. 84, F122–F124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watterberg, K. L., Gerdes, J. S. & Cook, K. L. Impaired glucocorticoid synthesis in premature infants developing chronic lung disease. Pediatr. Res. 50, 190–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Watterberg, K. L. et al. Adrenal function links to early postnatal growth and blood pressure at age 6 in children born extremely preterm. Pediatr. Res. 86, 339–347 (2019).

    Article  PubMed  Google Scholar 

  11. Watterberg, K. L., Scott, S. M., Backstrom, C., Gifford, K. L. & Cook, K. L. Links between early adrenal function and respiratory outcome in preterm infants: airway inflammation and patent ductus arteriosus. Pediatrics 105, 320–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Doyle, L. W., Ehrenkranz, R. A. & Halliday, H. L. Late (>7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst. Rev. CD001145 (2014).

  13. Doyle, L. W., Ehrenkranz, R. A. & Halliday, H. L. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst. Rev. CD001146 (2014).

  14. Arad, I. et al. Long-term cognitive benefits of antenatal corticosteroids for prematurely born children with cranial ultrasound abnormalities. Am. J. Obstet. Gynecol. 186, 818–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Doyle, L. W., Halliday, H. L., Ehrenkranz, R. A., Davis, P. G. & Sinclair, J. C. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J. Pediatr. 165, 1258–1260 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Committee on Obstetric Practice. Committee Opinion No. 713: antenatal corticosteroid therapy for fetal maturation. Obstet. Gynecol. 130, e102–e109 (2017).

    Article  Google Scholar 

  17. Aly, H., Othman, H. F., Munster, C., Das, A. & Sears, J. The US national trend for retinopathy of prematurity. Am. J. Perinatol. 14, 1569–1576 (2022).

  18. Kim, S. J. et al. Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv. Ophthalmol. 63, 618–637 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mirabelli, P. et al. Genome-wide expression differences in anti-VEGF and dexamethasone treatment of inflammatory angiogenesis in the rat cornea. Sci. Rep. 7, 7616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smith, L. E. Through the eyes of a child: understanding retinopathy through ROP the friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 49, 5177–5182 (2008).

    Article  PubMed  Google Scholar 

  21. Bonafiglia, E. et al. Early and late onset sepsis and retinopathy of prematurity in a cohort of preterm infants. Sci. Rep. 12, 11675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, J. W. Risk factor analysis for the development and progression of retinopathy of prematurity. PLoS One 14, e0219934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diggikar, S., Aradhya, A. S., Swamy, R. S., Namachivayam, A. & Chandrasekaran, M. Effect of enteral long-chain polyunsaturated fatty acids on retinopathy of prematurity: a systematic review and meta-analysis. Neonatology 119, 547–557 (2022).

  24. Das, A. et al. Effect of fluctuation of oxygenation and time spent in the target range on retinopathy of prematurity in extremely low birth weight infants. J. Neonatal Perinat. Med. 11, 257–263 (2018).

    Article  CAS  Google Scholar 

  25. Cuculich, P. S., DeLozier, K. A., Mellen, B. G. & Shenai, J. P. Postnatal dexamethasone treatment and retinopathy of prematurity in very-low-birth-weight neonates. Biol. Neonate 79, 9–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Haroon Parupia, M. F. & Dhanireddy, R. Association of postnatal dexamethasone use and fungal sepsis in the development of severe retinopathy of prematurity and progression to laser therapy in extremely low-birth-weight infants. J. Perinatol. 21, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Movsas, T. Z., Spitzer, A. R. & Gewolb, I. H. Postnatal corticosteroids and risk of retinopathy of prematurity. J. AAPOS 20, 348–352 (2016).

    Article  PubMed  Google Scholar 

  28. Öhnell, H. M., Andreasson, S. & Gränse, L. Dexamethasone eye drops for the treatment of retinopathy of prematurity. Ophthalmol. Retina 6, 181–182 (2022).

    Article  PubMed  Google Scholar 

  29. Tao, K. Postnatal administration of systemic steroids increases severity of retinopathy in premature infants. Pediatr. Neonatol. 63, 220–226 (2022).

    Article  PubMed  Google Scholar 

  30. Sun, Y., Hellstrom, A. & Smith, L. E. H. in Fanaroff & Martin’s Neonatal-Perinatal Medicine Vol. 2 (eds Martin, R.J., Fanaroff, A.A. & Walsh, M.C.) Ch. 1767–1774 (Elsevier, Saunders, 2015).

  31. Ozgur Gursoy, O., Gurer, H. G., Yildiz Eren, C., Erdogan Ozgur, P. & Gursoy, H. The association of various obstetric and perinatal factors with retinopathy of prematurity. Int. Ophthalmol. 42, 2719–2728 (2022).

  32. Hartnett, M. E. Discovering mechanisms in the changing and diverse pathology of retinopathy of prematurity: The Weisenfeld Award Lecture. Invest. Ophthalmol. Vis. Sci. 60, 1286–1297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quinlivan, J. A., Beazley, L. D., Evans, S. F., Newnham, J. P. & Dunlop, S. A. Retinal maturation is delayed by repeated, but not single, maternal injections of betamethasone in sheep. Eye (Lond.) 14, 93–98 (2000).

    Article  PubMed  Google Scholar 

  34. Spandau, U. H., Sauder, G., Schubert, U., Hammes, H. P. & Jonas, J. B. Effect of triamcinolone acetonide on proliferation of retinal endothelial cells in vitro and in vivo. Br. J. Ophthalmol. 89, 745–747 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spandau, U. H., Vom Hagen, F., Hammes, H. P. & Jonas, J. B. Effect of intravitreal triamcinolone acetonide on retinal apoptosis in experimental retinal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 246, 1069–1070 (2008).

    Article  PubMed  Google Scholar 

  36. Hartnett, M. E. et al. Triamcinolone reduces neovascularization, capillary density and IGF-1 receptor phosphorylation in a model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 47, 4975–4982 (2006).

    Article  PubMed  Google Scholar 

  37. Malaeb, S. N. & Stonestreet, B. S. Steroids and injury to the developing brain: net harm or net benefit? Clin. Perinatol. 41, 191–208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zeng, L. et al. Corticosteroids for the prevention of bronchopulmonary dysplasia in preterm infants: a network meta-analysis. Arch. Dis. Child Fetal Neonatal Ed. 103, F506–F511 (2018).

    Article  PubMed  Google Scholar 

  39. Baisden, B., Sonne, S., Joshi, R. M., Ganapathy, V. & Shekhawat, P. S. Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta. Placenta 28, 1082–1090 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newell-Price, J. D. C. & Auchus, R. J. The Adrenal Cortx. In Williams Textbook of Endocrinology (ed. Melmed, S. & Auchus R. J. et al.) Ch. 15, 480–541 (Elsevier, 2020).

  41. Nakanishi, H. et al. Trends in the neurodevelopmental outcomes among preterm infants from 2003–2012: a retrospective cohort study in Japan. J. Perinatol. 38, 917–928 (2018).

    Article  PubMed  Google Scholar 

  42. Aly, H., Othman, H. F., Munster, C., Das, A. & Sears, J. The U.S. national trend for retinopathy of prematurity. Am. J. Perinatol. 29, 1569–1576 (2022).

    Article  PubMed  Google Scholar 

  43. Hwang, J. H., Lee, E. H. & Kim, E. A. Retinopathy of prematurity among very-low-birth-weight infants in Korea: incidence, treatment, and risk factors. J. Korean Med. Sci. 30, S88–S94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siffel, C., Hirst, A. K., Sarda, S. P., Kuzniewicz, M. W. & Li, D. K. The clinical burden of extremely preterm birth in a large medical records database in the United States: mortality and survival associated with selected complications. Early Hum. Dev. 171, 105613 (2022).

    Article  PubMed  Google Scholar 

  45. Hsu, H. T. et al. Late vitreoretinal complications of regressed retinopathy of prematurity: retinal break, vitreous hemorrhage and retinal detachment. Ophthalmol. Retina 7, 72–80 (2022).

  46. Smolkin, T. et al. Late postnatal systemic steroids predispose to retinopathy of prematurity in very-low-birth-weight infants: a comparative study. Acta Paediatr. 97, 322–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Petursdottir, D., Holmstrom, G. & Larsson, E. Visual function is reduced in young adults formerly born prematurely: a population-based study. Br. J. Ophthalmol. 104, 541–546 (2020).

    Article  PubMed  Google Scholar 

  48. Kistner, A., Jacobson, L., Ostergren, J. & Hellstrom, A. Retinopathy of prematurity is associated with increased systolic blood pressure in adults who were born preterm. Neonatology 112, 87–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Holmstrom, G. et al. New modifications of Swedish ROP guidelines based on 10-year data from the Swedrop Register. Br. J. Ophthalmol. 104, 943–949 (2020).

    Article  PubMed  Google Scholar 

  50. Fung, A. T. et al. Local delivery of corticosteroids in clinical ophthalmology: a review. Clin. Exp. Ophthalmol. 48, 366–401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chung, I. Y. et al. Protective effects of triamcinolone acetonide upon the upregulation and phosphorylation of GAP 43 in an animal model of retinopathy of prematurity. Acta Ophthalmol. 88, e217–e221 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Watterberg, K. L. American Academy of Pediatrics. Committee on Fetus and Newborn Policy statement-postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics 126, 800–808 (2010).

    Article  PubMed  Google Scholar 

  53. Cummings, J. J. P. & Aap, A. K. Committee on Fetus and Newborn Postnatal corticosteroids to prevent or treat chronic lung disease following preterm birth. Pediatrics 149, e2022057530 (2022).

    Article  PubMed  Google Scholar 

  54. Shukla, A. et al. Comparison of biphasic vs static oxygen saturation targets among infants with retinopathy of prematurity. JAMA Ophthalmol. 137, 417–423 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lawas-Alejo, P. A., Slivka, S., Hernandez, H., Bry, K. & Hallman, M. Hyperoxia and glucocorticoid modify retinal vessel growth and interleukin-1 receptor antagonist in newborn rabbits. Pediatr. Res. 45, 313–317 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Sears, J. E. & Hoppe, G. Triamcinolone acetonide destabilizes VEGF mRNA in muller cells under continuous cobalt stimulation. Invest Ophthalmol. Vis. Sci. 46, 4336–4341 (2005).

    Article  PubMed  Google Scholar 

Download references

Funding

The study was funded in part by NIH grant UL1 TR002548 from NCATS/NIH, which provided us REDcap (Research electronic data capture) software used for data storage, analysis, and sharing.

Author information

Authors and Affiliations

Authors

Contributions

Data collection was performed by the following authors: M.A.M.A., N.K., H.K., C.M., M.P., and M.A.A.F. All authors participated in the concept and design, analysis and interpretation of data, and drafting and revising of the manuscript.

Corresponding author

Correspondence to Prem S. Shekhawat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This is a retrospective cohort study so both IRBs exempted us from obtaining consent from the patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhawat, P.S., Ali, M.A.M., Kannekanti, N. et al. Impact of postnatal steroids on peripheral avascular retina and severity of retinopathy of prematurity. Pediatr Res 94, 1966–1972 (2023). https://doi.org/10.1038/s41390-023-02673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02673-4

Search

Quick links