Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Plasma serotonergic biomarkers are associated with hypoxemia events in preterm neonates

Abstract

Background

Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates.

Methods

TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw.

Results

At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks.

Conclusions

Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates.

Impact

  • Hypoxemia events are frequent in preterm infants and are associated with poor outcomes.

  • Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters.

  • This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates.

  • Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preterm infants were screened for eligibility if they met the inclusion criteria of <306/7 weeks GA and <7 days postnatal age without major congenital anomalies.
Fig. 2: Graphical representation of associations between neuroactive biomarkers 5-HT and KA with hypoxemic parameters at 1 week of age.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Di Fiore, J. M., MacFarlane, P. M. & Martin, R. J. Intermittent hypoxemia in preterm infants. Clin. Perinatol. 46, 553–565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Di Fiore, J. M. & Raffay, T. M. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp. Neurol. 342, 113753 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jensen, E. A. et al. Association between intermittent hypoxemia and severe bronchopulmonary dysplasia in preterm infants. Am. J. Respir. Crit. Care Med. 204, 1192–1199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poets, C. F. et al. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA 314, 595–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrante, G., Carota, G., Li Volti, G. & Giuffrè, M. Biomarkers of oxidative stress for neonatal lung disease. Front. Pediatr. 9, 618867 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sánchez-Illana, Á. et al. Oxidative stress biomarkers in the preterm infant. Adv. Clin. Chem. 102, 127–189 (2021).

    Article  PubMed  Google Scholar 

  7. Sánchez-Illana, Á. et al. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal. Chim. Acta 996, 88–97 (2017).

    Article  PubMed  Google Scholar 

  8. Muñoz-Ortiz, J., Muñoz-Ortiz, E., López-Meraz, M. L., Beltran-Parrazal, L. & Morgado-Valle, C. Pre-Bötzinger complex: Generation and modulation of respiratory rhythm. Neurologia 34, 461–468 (2019).

    Article  PubMed  Google Scholar 

  9. Ramirez, J. M. et al. The cellular building blocks of breathing. Compr. Physiol. 2, 2683–2731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nurse, C. A. & Piskuric, N. A. Signal processing at mammalian carotid body chemoreceptors. Semin. Cell Dev. Biol. 24, 22–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Prabhakar, N. R. & Peng, Y. J. Oxygen sensing by the carotid body: past and present. Adv. Exp. Med. Biol. 977, 3–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Teran, F. A., Massey, C. A. & Richerson, G. B. Serotonin neurons and central respiratory chemoreception: where are we now? Prog. Brain Res. 209, 207–233 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bravo, K., Eugenín, J. & Llona, I. Neurodevelopmental effects of serotonin on the brainstem respiratory network. Adv. Exp. Med. Biol. 1015, 193–216 (2017).

    Article  PubMed  Google Scholar 

  14. Cummings, K. J. & Hodges, M. R. The serotonergic system and the control of breathing during development. Respir. Physiol. Neurobiol. 270, 103255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Modoux, M., Rolhion, N., Mani, S. & Sokol, H. Tryptophan metabolism as a pharmacological target. Trends Pharm. Sci. 42, 60–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Kinney, H. C. & Haynes, R. L. The serotonin brainstem hypothesis for the sudden infant death syndrome. J. Neuropathol. Exp. Neurol. 78, 765–779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malloy, M. H. & Hoffman, H. J. Prematurity, sudden infant death syndrome, and age of death. Pediatrics 96, 464–471 (1995).

    CAS  PubMed  Google Scholar 

  18. Malloy, M. H. Sudden infant death syndrome among extremely preterm infants: United States 1997-1999. J. Perinatol. 24, 181–187 (2004).

    Article  PubMed  Google Scholar 

  19. Young, J. O., Geurts, A., Hodges, M. R. & Cummings, K. J. Active sleep unmasks apnea and delayed arousal in infant rat pups lacking central serotonin. J. Appl. Physiol. 123, 825–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hodges, M. R., Wehner, M., Aungst, J., Smith, J. C. & Richerson, G. B. Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J. Neurosci. 29, 10341–10349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hodges, M. R. & Richerson, G. B. The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J. Appl. Physiol. 108, 1425–1432 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. MacFarlane, P. M., Ribeiro, A. P. & Martin, R. J. Carotid chemoreceptor development and neonatal apnea. Respir. Physiol. Neurobiol. 185, 170–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Badawy, A. A. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 112, 248–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Abrahams, T. P., Taveira DaSilva, A. M., Hamosh, P., McManigle, J. E. & Gillis, R. A. Cardiorespiratory effects produced by blockade of excitatory amino acid receptors in cats. Eur. J. Pharmacol. 238, 223–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Guyenet, P. G., Mulkey, D. K., Stornetta, R. L. & Bayliss, D. A. Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J. Neurosci. 25, 8938–8947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moreira, T. S., Takakura, A. C., Colombari, E. & Guyenet, P. G. Central chemoreceptors and sympathetic vasomotor outflow. J. Physiol. 577, 369–386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mutolo, D., Bongianni, F., Nardone, F. & Pantaleo, T. Respiratory responses evoked by blockades of ionotropic glutamate receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Eur. J. Neurosci. 21, 122–134 (2005).

    Article  PubMed  Google Scholar 

  28. Silva, N. T., Nalivaiko, E., da Silva, L. G. & Haibara, A. S. Excitatory amino acid receptors in the dorsomedial hypothalamic area contribute to the chemoreflex tachypneic response. Respir. Physiol. Neurobiol. 212–214, 1–8 (2015).

    Article  PubMed  Google Scholar 

  29. Tolentino-Silva, F. P., Russo, A. K., Cravo, S. L. & Lopes, O. U. Respiratory effects of kynurenic acid microinjected into the ventromedullary surface of the rat. Braz. J. Med. Biol. Res. 31, 1339–1343 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Schumacher, R. E., Farrell, P. M. & Olson, E. B. Jr Circulating 5-hydroxytryptamine concentrations in preterm newborns. Pediatr. Pulmonol. 3, 117–122 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Di Fiore, J. M. et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J. Pediatr. 157, 69–73 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin, R. J., Di Fiore, J. M., Macfarlane, P. M. & Wilson, C. G. Physiologic basis for intermittent hypoxic episodes in preterm infants. Adv. Exp. Med. Biol. 758, 351–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Dennery, P. A. et al. Pre-Vent: the prematurity-related ventilatory control study. Pediatr. Res. 85, 769–776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Flynn, J. T. & Bancalari, E. On “supplemental therapeutic oxygen for prethreshold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I: Primary outcomes”. J. AAPOS 4, 65–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lario, S. et al. Plasma sample based analysis of gastric cancer progression using targeted metabolomics. Sci. Rep. 7, 17774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gardiner, J. C., Luo, Z. & Roman, L. A. Fixed effects, random effects and GEE: what are the differences? Stat. Med. 28, 221–239 (2009).

    Article  PubMed  Google Scholar 

  37. Heagerty, P. J. Marginally specified logistic-normal models for longitudinal binary data. Biometrics 55, 688–698 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. McCullagh, P. Regression models for ordinal data. J. R. Stat. Soc. Ser. B (Methodol.) 42, 109–127 (1980).

    Google Scholar 

  39. Clarke, G., Stone, T. W. & Schwarcz, R. The kynurenine pathway: towards metabolic equilibrium. Neuropharmacology 112, 235–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Schwarcz, R. & Stone, T. W. The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112, 237–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. O’Connor, J. C. et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 14, 511–522 (2009).

    Article  PubMed  Google Scholar 

  42. Lal, C. V. & Ambalavanan, N. Biomarkers, early diagnosis, and clinical predictors of bronchopulmonary dysplasia. Clin. Perinatol. 42, 739–754 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sahni, M. et al. Novel biomarkers of bronchopulmonary dysplasia and bronchopulmonary dysplasia-associated pulmonary hypertension. J. Perinatol. 40, 1634–1643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhandari, A. & Bhandari, V. Biomarkers in bronchopulmonary dysplasia. Paediatr. Respir. Rev. 14, 173–179 (2013).

    PubMed  Google Scholar 

  45. Murugesan, A. et al. Serum serotonin levels in patients with epileptic seizures. Epilepsia 59, e91–e97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haynes, R. L. et al. High serum serotonin in sudden infant death syndrome. Proc. Natl Acad. Sci. USA 114, 7695–7700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sibbald, W., Peters, S. & Lindsay, R. M. Serotonin and pulmonary hypertension in human septic ARDS. Crit. Care Med. 8, 490–494 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Nurse, C. A. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp. Physiol. 95, 657–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Doi, A. & Ramirez, J. M. Neuromodulation and the orchestration of the respiratory rhythm. Respir. Physiol. Neurobiol. 164, 96–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hodges, M. R. & Richerson, G. B. Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects. Respir. Physiol. Neurobiol. 164, 222–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwarcz, R., Bruno, J. P., Muchowski, P. J. & Wu, H. Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13, 465–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moraes, D. J., Zoccal, D. B. & Machado, B. H. Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Bötzinger complex of rats. J. Neurophysiol. 108, 610–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Solomon, I. C. Ionotropic excitatory amino acid receptors in pre-Botzinger complex play a modulatory role in hypoxia-induced gasping in vivo. J. Appl. Physiol. 96, 1643–1650 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, G., Feldman, J. L. & Smith, J. C. Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons. J. Neurophysiol. 64, 423–436 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Fairchild, K. D., Nagraj, V. P., Sullivan, B. A., Moorman, J. R. & Lake, D. E. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr. Res. 85, 987–993 (2019).

    Article  PubMed  Google Scholar 

  56. Raffay, T. M. et al. Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age. Pediatr. Res. 85, 318–323 (2019).

    Article  PubMed  Google Scholar 

  57. Bonnin, A. & Levitt, P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197, 1–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Dobson, N. R. et al. Caffeine decreases intermittent hypoxia in preterm infants nearing term-equivalent age. J. Perinatol. 37, 1135–1140 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Egri, C., Dunbar, M. & Horvath, G. A. Correlation between salivary, platelet and central serotonin levels in children. Can. J. Neurol. Sci. 47, 214–218 (2020).

    Article  PubMed  Google Scholar 

  60. Audhya, T., Adams, J. B. & Johansen, L. Correlation of serotonin levels in CSF, platelets, plasma, and urine. Biochim. Biophys. Acta 1820, 1496–1501 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the participating families, the neonatal research staff, specifically Advanced Clinical Research Nurse Ms. Arlene Zadell, and our scientific collaborators at Institut des Biomolecules Max Mousseron, UMR 5247 CNRS, ENSCM, Universite de Montpellier, Montpellier, France, specifically Camille Oger, Jean-Marie Galano, and Thierry Durand.

Funding

This study was supported by grants from the National Institutes of Health [U01HL133643, U01HL133708 and UL1TR002548. A.S.I. acknowledges the support of RETICS from the Health Research Institute Carlos III, Spain (ISCIII) - European Regional Development Fund (FEDER) [RD16/0022/001], the PFIS grant from ISCIII (Ministry of Science and Innovation) [FI16/00380], and Margarita Salas grant [UP2021-044-MS21-084] from the Ministry of Universities of the Government of Spain, financed by the European Union, NextGeneration EU. M.V. acknowledges the support of RETICS [PN 2018-2021 (Spain)], ISCIII, Spain - Sub-Directorate General for Research Assessment and Promotion and FEDER [RD16/0022], and ISCIII (Ministry of Science and Innovation) [PI20/00964]. J.K. acknowledges the support of ISCIII, Spain and co-funded by the European Union [CPII21/00003].

Author information

Authors and Affiliations

Authors

Contributions

P.M.M., A.M.H., T.M.R., J.M.D., M.V., and R.J.M. made substantial contributions to conception and study design, acquisition of data and analysis, and interpretation of data. G.Q., A.S.I., J.K., J.D.P.-R., C.T., Z.C., and N.M. made substantial contributions to data acquisition and analysis. All authors contributed to revising the article and gave critically important intellectual input. All authors gave final approval of the version to be published.

Corresponding author

Correspondence to Peter Mathew MacFarlane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written parental consent was obtained. Oversight was provided by a local institutional review board and observational and safety monitoring board, appointed by the NHLBI.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacFarlane, P.M., Martin, R.J., Di Fiore, J.M. et al. Plasma serotonergic biomarkers are associated with hypoxemia events in preterm neonates. Pediatr Res 94, 1436–1443 (2023). https://doi.org/10.1038/s41390-023-02620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02620-3

This article is cited by

Search

Quick links