Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

O-GlcNAcylation of E3 ubiquitin ligase SKP2 promotes hepatocellular carcinoma proliferation

Abstract

O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) and ubiquitination are critical posttranslational modifications that regulate tumor development and progression. The continuous progression of the cell cycle is the fundamental cause of tumor proliferation. S-phase kinase-associated protein 2 (SKP2), an important E3 ubiquitin ligase, assumes a pivotal function in the regulation of the cell cycle. However, it is still unclear whether SKP2 is an effector of O-GlcNAcylation that affects tumor progression. In this study, we found that SKP2 interacted with O-GlcNAc transferase (OGT) and was highly O-GlcNAcylated in hepatocellular carcinoma (HCC). Mechanistically, the O-GlcNAcylation at Ser34 stabilized SKP2 by reducing its ubiquitination and degradation mediated by APC-CDH1. Moreover, the O-GlcNAcylation of SKP2 enhanced its binding ability with SKP1, thereby enhancing its ubiquitin ligase function. Consequently, SKP2 facilitated the transition from the G1-S phase of the cell cycle by promoting the ubiquitin degradation of cell cycle-dependent kinase inhibitors p27 and p21. Additionally, targeting the O-GlcNAcylation of SKP2 significantly suppressed the proliferation of HCC. Altogether, our findings reveal that O-GlcNAcylation, a novel posttranslational modification of SKP2, plays a crucial role in promoting HCC proliferation, and targeting the O-GlcNAcylation of SKP2 may become a new therapeutic strategy to impede the progression of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: O-GlcNAcylation occurs on SKP2.
Fig. 2: OGT mediates O-GlcNAcylation of SKP2 on Ser34.
Fig. 3: SKP2 O-GlcNAcylation promotes the proliferation of hepatocellular carcinoma in vitro and in vivo.
Fig. 4: O-GlcNAcylation stabilizes SKP2 through restraint of its ubiquitination.
Fig. 5: SKP2 O-GlcNAcylation promotes SCF-Skp2 E3 ligase activity by enhancing Skp2-Skp1 Binding.
Fig. 6: Working summary of the study.

Similar content being viewed by others

Data availability

The original mass spectrometry analysis data of SKP2 O-GlcNAcylation was deposited in the integrated proteome resource (iProX, PXD048234). All relevant data are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:139–52.

    Article  PubMed  Google Scholar 

  3. Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17:666–72.

    Article  CAS  PubMed  Google Scholar 

  4. Hershko A, Ciechanover A, Varshavsky A. Basic medical research award. The ubiquitin system. Nat Med. 2000;6:1073–81.

    Article  CAS  PubMed  Google Scholar 

  5. Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301–7.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article  CAS  PubMed  Google Scholar 

  7. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  8. Sutterlüty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Müller U, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Biol. 1999;1:207–14.

    Article  Google Scholar 

  9. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA. 2001;98:2515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA. 1998;95:11324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem. 2003;278:25752–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chan C-H, Lee S-W, Wang J, Lin H-K. Regulation of Skp2 expression and activity and its role in cancer progression. Sci World J. 2010;10:1001–15.

    Article  CAS  Google Scholar 

  13. Ben-Izhak O, Lahav-Baratz S, Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, et al. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. J Urol. 2003;170:241–5.

    Article  CAS  PubMed  Google Scholar 

  14. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  15. Chang YH, Weng CL, Lin KI. O-GlcNAcylation and its role in the immune system. J Biomed Sci. 2020;27:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hart GW, Housley MP, Slawson C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JB, Pyo K-H, Kim HR. Role and function of O-GlcNAcylation in cancer. Cancers. 2021;13:5365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chatham JC, Zhang J, Wende AR. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiol Rev. 2021;101:427–93.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou P, Chang WY, Gong DA, Huang LY, Liu R, Liu Y, et al. O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma. Oncogene. 2023;42:725–36.

    Article  CAS  PubMed  Google Scholar 

  20. Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 2021;28:427–38.

    Article  CAS  PubMed  Google Scholar 

  21. Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci. 2002;59:126–42.

    Article  CAS  PubMed  Google Scholar 

  22. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. Control of the SCF(Skp2–Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature. 2004;428:190–3.

  23. Reed SI. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol. 2003;4:855–64.

    Article  CAS  PubMed  Google Scholar 

  24. Levine ZG, Potter SC, Joiner CM, Fei GQ, Nabet B, Sonnett M, et al. Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci USA. 2021;118:e2016778118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu Q, Zhou H, Wu L, Lai Z, Geng D, Yang W, et al. O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1. Nat Chem Biol. 2022;18:1087–95.

    Article  CAS  PubMed  Google Scholar 

  26. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012;337:975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020;11:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Yan Y, Yin J, Tang N, Wang K, Huang L, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N6-methyladenosine-dependent manner. Signal Transduct Target Ther. 2023;8:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, et al. Cyclin D1 stability is partly controlled by O-GlcNAcylation. Front Endocrinol. 2019;10:106.

    Article  Google Scholar 

  30. Wu J, Tan Z, Li H, Lin M, Jiang Y, Liang L, et al. Melatonin reduces proliferation and promotes apoptosis of bladder cancer cells by suppressing O‐GlcNAcylation of cyclin‐dependent‐like kinase 5. J Pineal Res. 2021;71:e12765.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu H, Liu F, Tao T, Zhang D, Liu X, Zhu G, et al. Modification of p27 with O-linked N-acetylglucosamine regulates cell proliferation in hepatocellular carcinoma. Mol Carcinog. 2017;56:258–71.

    Article  CAS  PubMed  Google Scholar 

  32. Fagan-Solis KD, Pentecost BT, Gozgit JM, Bentley BA, Marconi SM, Otis CN, et al. SKP2 overexpression is associated with increased serine 10 phosphorylation of p27 (pSer10p27) in triple-negative breast cancer. J Cell Physiol. 2014;229:1160–9.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Lu Z, Bauzon F, Fu H, Cui J, Locker J, et al. p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene. 2017;36:60–70.

    Article  PubMed  Google Scholar 

  34. Masuda T, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 2002;62:3819–25.

    CAS  PubMed  Google Scholar 

  35. Westermann F, Henrich K-O, Wei JS, Lutz W, Fischer M, König R, et al. High Skp2 expression characterizes high-risk neuroblastomas independent of MYCN status. Clin Cancer Res J Am Assoc Cancer Res. 2007;13:4695–703.

    Article  CAS  Google Scholar 

  36. Wang H, Luo J, Tian X, Xu L, Zhai Z, Cheng M, et al. DNAJC5 promotes hepatocellular carcinoma cells proliferation though regulating SKP2 mediated p27 degradation. Biochim Biophys Acta Mol Cell Res. 2021;1868:118994.

    Article  CAS  PubMed  Google Scholar 

  37. Wang S-T, Ho HJ, Lin J-T, Shieh J-J, Wu C-Y. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis. 2017;8:e2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP. Skp2 regulates Myc protein stability and activity. Mol Cell. 2023;11:1177–88.

    Article  Google Scholar 

  39. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11:1189–200.

    Article  PubMed  Google Scholar 

  40. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JMA, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA. 2005;102:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asmamaw MD, Zhang LR, Liu HM, Shi XJ, Liu Y. Skp2 is a novel regulator of LSD1 expression and function in gastric cancer. Genes Dis. 2023;10:2267–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan C-H, Li C-F, Yang W-L, Gao Y, Lee S-W, Feng Z, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149:1098–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun. 2018;9:2269.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang I-C, Chen Y-J, Hughes D, Petrovic V, Major ML, Park HJ, et al. Forkhead Box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010;29:2831–42.

    Article  CAS  PubMed  Google Scholar 

  46. Rodier G, Coulombe P, Tanguay P-L, Boutonnet C, Meloche S. Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. EMBO J. 2008;27:679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han F, Li C-F, Cai Z, Zhang X, Jin G, Zhang W-N, et al. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun. 2018;9:4728.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin H-K, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan C-H, et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 2009;11:420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Inuzuka H, Gao D, Finley LWS, Yang W, Wan L, Fukushima H, et al. Acetylation-dependent regulation of Skp2 function. Cell. 2012;150:179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24:1770–83.

    Article  CAS  PubMed  Google Scholar 

  51. Abukhdeir AM, Park BH. p21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med. 2008;10:e19.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roy S, Gu M, Ramasamy K, Singh RP, Agarwal C, Siriwardana S, et al. P21/Cip1 and P27/Kip1 are essential molecular targets of inositol hexaphosphate for its antitumor efficacy against prostate cancer. Cancer Res. 2009;69:1166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. García-Osta A, Dong J, Moreno-Aliaga MJ, Ramirez MJ. p27, The cell cycle and Alzheimer´s disease. Int J Mol Sci. 2022;23:1211.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3:245–52.

    Article  CAS  PubMed  Google Scholar 

  55. Chan C-H, Morrow JK, Li C-F, Gao Y, Jin G, Moten A, et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154:556–68.

    Article  CAS  PubMed  Google Scholar 

  56. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, et al. Targeting the p27 E3 ligase SCFSkp2 results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111:4690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rico-Bautista E, Yang C-C, Lu L, Roth GP, Wolf DA. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, et al. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. J Exp Clin Cancer Res. 2019;38:50.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest. 2021;131:e144703.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful that Prof. Tongchuan He (University of Chicago, USA) kindly provided the AdEasy system. We also thank Prof. Ding Xue (Tsinghua University, Beijing, China) for supplying the CRISPR/Cas9 system. This work was supported by the China National Natural Science Foundation (Grant nos. 82272975, 82073251, 82072286, 82304288), the National Key Research and Development Program of China (2023YFC23068), the Innovative and Entrepreneurial Team of Chongqing Talents Plan, Chongqing Medical Scientific Research Project (Joint project of Chongqing Health Commission and Science and Technology Bureau, 2023DBXM007), the Future Medical Youth Innovation Team of Chongqing Medical University (W0036, W0101), Senior Medical Talents Program of Chongqing for Young and Middle-aged, and the Kuanren talents and DengFeng program of the second affiliated hospital of Chongqing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

LYH, NT, and KW designed the experiments; ZQF JXY and ZRZ performed and analyzed the data; ZQF, JXY, ZRZ, and ZC contributed materials and data, and assisted in data analysis; ZQF, JXY, LYH, NT, and KW wrote and edited the paper. All authors have read and approved the article.

Corresponding authors

Correspondence to Luyi Huang, Ni Tang or Kai Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The study protocol for clinical patient samples was approved by the Medical Ethics Committee of Chongqing Medical University (reference number: 2023076). Experimental animals were handled according to guidelines approved by the Institutional Animal Care and Use Committee of Chongqing Medical University (approval number: 20230188). A pathogen-free environment was provided to keep all mice in the Laboratory Animal Center of the Chongqing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Yin, J., Zhang, Z. et al. O-GlcNAcylation of E3 ubiquitin ligase SKP2 promotes hepatocellular carcinoma proliferation. Oncogene 43, 1149–1159 (2024). https://doi.org/10.1038/s41388-024-02977-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02977-7

Search

Quick links