Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Overcoming resistance to programmed cell death protein 1 (PD-1) blockade with allogeneic invariant natural killer T-cells (iNKT)

Abstract

Gastric cancer is the 5th most common malignancy worldwide with only 36% of patients with metastatic disease surviving beyond 5 years. Despite therapeutic improvements with the advent of immune checkpoint inhibitors, most patients with gastric cancer develop disease progression related to tumor resistance. Novel immunotherapeutic approaches, including invariant natural killer (iNKT) cells, are in clinical development and represent potential therapeutic options to overcome resistance. AgenT-797 is an allogeneic human unmodified iNKT derived from healthy donors. Activation of iNKT cells by tumor lipid antigens can trigger direct cytotoxicity and promote indirect anti-tumor immune responses such as recruitment and activation of T cells, NK cells, and dendritic cells through secretion of cytokines and IFNγ. We describe immune modulation leading to durable tumor response in a patient with microsatellite instability-high (MSI-H) advanced gastric adenocarcinoma treated with agent-797 after progression on standard chemotherapy and anti-PD-1 therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Genomic and imaging analysis of tumor biopsies.
Fig. 3: RNAseq gene expression analysis of screening and on-treatment (D15) tumor biopsies.

Similar content being viewed by others

References

  1. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14:26–38.

    CAS  PubMed  Google Scholar 

  2. Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G, et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:1005–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hu HM, Tsai HJ, Ku HY, Lo SS, Shan YS, Chang HC, et al. Survival outcomes of management in metastatic gastric adenocarcinoma patients. Sci Rep. 2021;11:23142.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Janjigian YY, Kawazoe A, Yanez P, Li N, Lonardi S, Kolesnik O, et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 2021;600:727–30.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398:27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  7. Kono K, Nakajima S, Mimura K. Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer. 2020;23:565–78.

    Article  CAS  PubMed  Google Scholar 

  8. Baxter MA, Middleton F, Cagney HP, Petty RD. Resistance to immune checkpoint inhibitors in advanced gastro-oesophageal cancers. Br J Cancer. 2021;125:1068–79.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ingram Z, Madan S, Merchant J, Carter Z, Gordon Z, Carey G, et al. Targeting Natural Killer T Cells in Solid Malignancies. Cells. 2021;10:1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Said SS, Ibrahim WN. Cancer Resistance to Immunotherapy: Comprehensive Insights with Future Perspectives. Pharmaceutics. 2023;15:1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging. 2022;14:1048–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu L, Yun Z, Tagawa T, De la Maza L, Wu MO, Yu J, et al. Activation of CD1d-restricted natural killer T cells can inhibit cancer cell proliferation during chemotherapy by promoting the immune responses in murine mesothelioma. Cancer Immunol Immunother. 2014;63:1285–96.

    Article  CAS  PubMed  Google Scholar 

  15. Shaked Y, Pham E, Hariharan S, Magidey K, Beyar-Katz O, Xu P, et al. Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose Chemotherapy. Cancer Res. 2016;76:5983–93.

    Article  CAS  PubMed  Google Scholar 

  16. Dhodapkar MV, Richter J. Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol. 2011;140:160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu D, Song L, Wei J, Courtney AN, Gao X, Marinova E, et al. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest. 2012;122:2221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Metelitsa LS. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol. 2011;140:119–29.

    Article  CAS  PubMed  Google Scholar 

  19. Sordo-Bahamonde C, Vitale M, Lorenzo-Herrero S, Lopez-Soto A, Gonzalez S. Mechanisms of Resistance to NK Cell Immunotherapy. Cancers. 2020;12:893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nayyar G, Chu Y, Cairo MS. Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Front Oncol. 2019;9:51.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gras Navarro A, Bjorklund AT, Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol. 2015;6:202.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Melero I, Rouzaut A, Motz GT, Coukos G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 2014;4:522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H, et al. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res. 2008;68:4746–53.

    Article  CAS  PubMed  Google Scholar 

  24. Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013;73:3499–510.

    Article  CAS  PubMed  Google Scholar 

  25. Carneiro B, Garmezy B, Hamm JT, Sanborn RE, Wise-Draper T, Khoueiry AE-, et al. Phase 1 clinical update of allogeneic invariant natural killer T cells (iNKTs), agenT-797, alone or in combination with pembrolizumab or nivolumab in patients with advanced solid tumors. Cancer Res. 2023;83:CT275–CT275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MJH, MAP, and BAC were responsible for writing the report, extracting and analyzing data, interpreting results, and updating reference lists. HS, JEG, and JSB contributed to the design and writing of the report, interpreted the results, and provided feedback on the manuscript.

Corresponding author

Correspondence to Benedito A. Carneiro.

Ethics declarations

Competing interests

MJH, HS: No conflicts of interest. MAP, JEG, JSB: Employee and stockholder of Agenus. BC: Institutional support for clinical trial from Mink Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadfield, M.J., Safran, H., Purbhoo, M.A. et al. Overcoming resistance to programmed cell death protein 1 (PD-1) blockade with allogeneic invariant natural killer T-cells (iNKT). Oncogene 43, 758–762 (2024). https://doi.org/10.1038/s41388-024-02948-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02948-y

Search

Quick links