Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STT3A-mediated viral N-glycosylation underlies the tumor selectivity of oncolytic virus M1

Abstract

Oncolytic viruses are emerging as promising anticancer agents. Although the essential biological function of N-glycosylation on viruses are widely accepted, roles of N-glycan and glycan-processing enzyme in oncolytic viral therapy are remain elusive. Here, via cryo-EM analysis, we identified three distinct N-glycans on the envelope of oncolytic virus M1 (OVM) as being necessary for efficient receptor binding. E1-N141-glycan has immediate impact on the binding of MXRA8 receptor, E2-N200-glycan mediates the maturation of E2 from its precursor PE2 which is unable to bind with MXRA8, and E2-N262-glycan slightly promotes receptor binding. The necessity of OVM N-glycans in receptor binding make them indispensable for oncolysis in vitro and in vivo. Further investigations identified STT3A, a key catalytic subunit of oligosaccharyltransferase (OST), as the determinant of OVM N-glycosylation, and STT3A expression in tumor cells is positively correlated with OVM-induced oncolysis. Increased STT3A expression was observed in various solid tumors, pointing to a broad-spectrum anticancer potential of OVM. Collectively, our research supports the importance of STT3A-mediated N-glycosylation in receptor binding and oncolysis of OVM, thus providing a novel predictive biomarker for OVM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of OVM and its N-glycans revealed by cryo-EM.
Fig. 2: N-glycans on OVM spikes are involved in the binding of receptor hMXRA8.
Fig. 3: N to Q mutation abolish N-glycosylation at viral envelope protein and affect the cleavage of E2 protein.
Fig. 4: Deglycosylation mutations of OVM impairs the binding to hMXRA8.
Fig. 5: Each N-glycan of OVM is indispensable for efficient oncolysis.
Fig. 6: STT3A mediates N-glycosylation infectivity of OVM in tumor cells.
Fig. 7: STT3A is overexpressed in multiple human cancers.

Similar content being viewed by others

Data availability

The accession numbers for the cryo-EM density maps reported in this paper are Electron Microscopy Data Bank: EMD-31716, EMD-31717, EMD-31718, EMD-31719, and EMD-31720. The accession numbers for the atomic models reported in this paper are PDB: 7V4T and 7V4U.

References

  1. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170:1109–19.e1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384:1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu J, Cai XF, Yan G. Alphavirus M1 induces apoptosis of malignant glioma cells via downregulation and nucleolar translocation of p21WAF1/CIP1 protein. Cell Cycle. 2009;8:3328–39.

    Article  CAS  PubMed  Google Scholar 

  4. Hu C, Liu Y, Lin Y, Liang JK, Zhong WW, Li K, et al. Intravenous injections of the oncolytic virus M1 as a novel therapy for muscle-invasive bladder cancer. Cell Death Dis. 2018;9:274.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci USA. 2014;111:E4504–4512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song D, Jia X, Liu X, Hu L, Lin K, Xiao T, et al. Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors. Signal Transduct Target Ther. 2022;7:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hasan SS, Sun C, Kim AS, Watanabe Y, Chen CL, Klose T, et al. Cryo-EM structures of eastern equine encephalitis virus reveal mechanisms of virus disassembly and antibody neutralization. Cell Rep. 2018;25:3136–47.e3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pletnev SV, Zhang W, Mukhopadhyay S, Fisher BR, Hernandez R, Brown DT, et al. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell. 2001;105:127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, Smith DR, et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol. 2005;79:8339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Acharya D, Paul AM, Anderson JF, Huang F, Bai F. Loss of glycosaminoglycan receptor binding after mosquito cell passage reduces chikungunya virus infectivity. PLoS Negl Trop Dis. 2015;9:e0004139.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aksnes I, Markussen T, Braaen S, Rimstad E. Mutation of N-glycosylation sites in salmonid alphavirus (SAV) envelope proteins attenuate the virus in cell culture. Viruses. 2020;12:1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj. 2019;1863:1480–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R. Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell. 2003;12:101–11.

    Article  CAS  PubMed  Google Scholar 

  14. Shrimal S, Trueman SF, Gilmore R. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. J Cell Biol. 2013;201:81–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen L, Wang M, Zhu D, Sun Z, Ma J, Wang J, et al. Implication for alphavirus host-cell entry and assembly indicated by a 3.5A resolution cryo-EM structure. Nat Commun. 2018;9:5326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ribeiro-Filho HV, Coimbra LD, Cassago A, Rocha RPF, Guerra J, de Felicio R, et al. Cryo-EM structure of the mature and infective Mayaro virus at 4.4 A resolution reveals features of arthritogenic alphaviruses. Nat Commun. 2021;12:3038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gavel Y, von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990;3:433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ribeiro-Filho HV, Coimbra LD, Cassago A, Rocha RPF, Guerra JVD, de Felicio R, et al. Cryo-EM structure of the mature and infective Mayaro virus at 4.4 angstrom resolution reveals features of arthritogenic alphaviruses. Nat Commun. 2021;12:3038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369:330–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou ZH, Dougherty M, Jakana J, He J, Rixon FJ, Chiu W. Seeing the herpesvirus capsid at 8.5 A. Science. 2000;288:877–80.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang R, Hryc CF, Cong Y, Liu X, Jakana J, Gorchakov R, et al. 4.4 A cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J. 2011;30:3854–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basore K, Kim AS, Nelson CA, Zhang R, Smith BK, Uranga C, et al. Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell. 2019;177:1725–37.e1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, et al. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468:709–12.

    Article  CAS  PubMed  Google Scholar 

  24. Rinis N, Golden JE, Marceau CD, Carette JE, Van Zandt MC, Gilmore R, et al. Editing N-glycan site occupancy with small-molecule oligosaccharyltransferase inhibitors. Cell Chem Biol. 2018;25:1231–41.e1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kulkarni A, Ferreira T, Bretscher C, Grewenig A, El-Andaloussi N, Bonifati S, et al. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat Commun. 2021;12:3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus–receptor interactions: structural insights for oncolytic virus development. Oncolytic Virother. 2019;8:39–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Lin Y, Li K, Liang J, Xiao X, Cai J, et al. Naturally existing oncolytic virus M1 is nonpathogenic for the nonhuman primates after multiple rounds of repeated intravenous injections. Hum Gene Ther. 2016;27:700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrington K, Freeman DJ, Kelly B, Harper J, Soria J-C. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18:689–706.

    Article  CAS  PubMed  Google Scholar 

  29. Ramelyte E, Tastanova A, Balazs Z, Ignatova D, Turko P, Menzel U, et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell. 2021;39:394–406.e394.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng RH, Kuhn RJ, Olson NH, Rossmann MG, Choi HK, Smith TJ, et al. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell. 1995;80:621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fuller SD, Berriman JA, Butcher SJ, Gowen BE. Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell. 1995;81:715–25.

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010;468:705–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang A, Zhou F, Liu C, Gao D, Qi R, Yin Y, et al. Structure of infective Getah virus at 2.8 A resolution determined by cryo-electron microscopy. Cell Discov. 2022;8:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holmes AC, Basore K, Fremont DH, Diamond MS. A molecular understanding of alphavirus entry. PLoS Pathog. 2020;16:e1008876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol. 2018;20:1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol. 2005;152:36–51.

    Article  PubMed  Google Scholar 

  37. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017;14:331–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang K. Gctf: real-time CTF determination and correction. J Struct Biol. 2016;193:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2007;157:38–46.

    Article  CAS  PubMed  Google Scholar 

  40. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife. 2018;7:e42166.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guo F, Jiang W. Single particle cryo-electron microscopy and 3-D reconstruction of viruses. Methods Mol Biol. 2014;1117:401–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, et al. Outcome of the first electron microscopy validation task force meeting. Structure. 2012;20:205–14.

    Article  CAS  PubMed  Google Scholar 

  43. Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods. 2012;9:853–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods. 2014;11:63–65.

    Article  CAS  PubMed  Google Scholar 

  45. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  CAS  PubMed  Google Scholar 

  46. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  48. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song H, Zhao Z, Chai Y, Jin X, Li C, Yuan F, et al. Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to chikungunya virus envelope protein. Cell. 2019;177:1714–24.e1712.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members in cryo-EM facility center in medical school of Zhejiang University; SUSTech cryo-EM facility center, Southern University of Science and Technology; Dr. Zhe Liu in the Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health; and Hongmei Li, Yinyin Li in School of Life Science for helps in data collection. Prof. Rui Zhang from Washington University, USA, for valuable suggestions regarding the manuscript. This work was supported by National Key R&D Program of China (2021YFA0909800), National Natural Science Foundation of China (82172730 and 81872887), Pioneering talents project of Guangzhou Development Zone, Guangdong Province (2020-L036), Guangdong Basic and Applied Basic Research Foundation (2023A1515012462 and 2021A1515011881), Leading team for entrepreneurship in Guangzhou, Guangdong Province (201809020004), and Science and Technology Planning Project of Guangdong Province, China (No: 2021B1212040017).

Author information

Authors and Affiliations

Authors

Contributions

DS, XJ, YL, and QZ developed original hypothesis and designed the experiments. XJ, YG, and QZ undertook the cryo-EM data collection and processing, reconstruction, map refinement, and atomic modeling. DS, TX, DJ, and YL designed and purified hMXRA8 protein and developed incubation conditions of virus and hMXRA8. DS, TX, and RS performed OVM virus infection experiments, drug screen, and binding ability assay. DS and YL engineered and purified OVM virus and deglycosylated mutants. DS, XJ, YG, and QZ performed data analysis. JC, JL, JH, WZ, and GY, supervised experiment and provide critical comments. DS, XJ, YL, and QZ, wrote the initial manuscript draft, with GY providing editorial suggestion.

Corresponding authors

Correspondence to Qinfen Zhang or Yuan Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Jia, X., Gao, Y. et al. STT3A-mediated viral N-glycosylation underlies the tumor selectivity of oncolytic virus M1. Oncogene 42, 3575–3588 (2023). https://doi.org/10.1038/s41388-023-02872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02872-7

Search

Quick links