Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UBE3B promotes breast cancer progression by antagonizing HIF-2α degradation

Abstract

Mutations in E3 ubiquitin ligase UBE3B have been linked to Kaufman Oculocerebrofacial Syndrome (KOS). Accumulating evidence indicates that UBE3B may play an important role in cancer. However, the precise role of UBE3B in cancer and the underlying mechanism remain largely uncharted. Here, we reported that UBE3B is an E3 ligase for hypoxia-inducible factor 2α (HIF-2α). Mechanically, UBE3B physically interacts with HIF-2α and promotes its lysine 63 (K63)-linked polyubiquitination, thereby inhibiting the Von Hippel-Lindau (VHL) E3 ligase complex-mediated HIF-2α degradation. UBE3B depletion inhibits breast cancer cell proliferation, colony formation, migration, and invasion in vitro and suppresses breast tumor growth and lung metastasis in vivo. We further identified K394, K497, and K503 of HIF-2α as key ubiquitination sites for UBE3B. K394/497/503R mutation of HIF-2α dramatically abolishes UBE3B-mediated breast cancer growth and lung metastasis. Intriguingly, the protein levels of UBE3B are upregulated and positively correlated with HIF-2α protein levels in breast cancer tissues. These findings uncover a critical mechanism underlying the role of UBE3B in HIF-2α regulation and breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UBE3B promotes the tumorigenic potential of breast cancer cells.
Fig. 2: UBE3B is required for breast tumor growth and metastasis.
Fig. 3: UBE3B interacts with HIF-2α in vitro and in vivo.
Fig. 4: UBE3B upregulates HIF-2α protein levels in breast cancer cells.
Fig. 5: UBE3B ubiquitylates HIF-2α at lysine residues 394, 497, and 503.
Fig. 6: UBE3B promotes HIF-2α transcriptional activity.
Fig. 7: UBE3B promotes breast tumor growth and metastasis via HIF-2α.

Similar content being viewed by others

Data availability

UBE3B expression data in human breast tumors in the TCGA dataset were downloaded from the UCSC Cancer Browser (http://genome-cancer.ucsc.edu). UBE3B mRNA expression was queried in adjacent normal breast tissues and primary and metastatic breast tumors with different stages or grades. Kaplan–Meier survival analysis was performed in breast cancer patients who were divided by medium expression levels of UBE3B mRNA. Kaplan–Meier plotter (http://kmplot.com) was utilized for overall survival analysis for breast cancer patients who were divided according to UBE3B protein levels. All data generated or analyzed during this study are included in this article and its supplementary information files. Any additional data presented in this paper are available from the corresponding author upon request.

References

  1. Kariminejad A, Ajeawung NF, Bozorgmehr B, Dionne-Laporte A, Molidperee S, Najafi K, et al. Kaufman oculo-cerebro-facial syndrome in a child with small and absent terminal phalanges and absent nails. J Hum Genet. 2017;62:465–71.

    Article  CAS  PubMed  Google Scholar 

  2. Flex E, Ciolfi A, Caputo V, Fodale V, Leoni C, Melis D, et al. Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome. J Med Genet. 2013;50:493–9.

    Article  CAS  PubMed  Google Scholar 

  3. Basel-Vanagaite L, Yilmaz R, Tang S, Reuter MS, Rahner N, Grange DK, et al. Expanding the clinical and mutational spectrum of Kaufman oculocerebrofacial syndrome with biallelic UBE3B mutations. Hum Genet. 2014;133:939–49.

    Article  CAS  PubMed  Google Scholar 

  4. Cheon S, Kaur K, Nijem N, Tuncay IO, Kumar P, Dean M, et al. The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc Natl Acad Sci USA. 2019;116:3662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ambrozkiewicz MC, Borisova E, Schwark M, Ripamonti S, Schaub T, Smorodchenko A, et al. The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Mol Psychiatry. 2021;26:1980–95.

    Article  CAS  PubMed  Google Scholar 

  6. Braganza A, Li J, Zeng X, Yates NA, Dey NB, Andrews J, et al. UBE3B Is a Calmodulin-regulated, Mitochondrion-associated E3 Ubiquitin Ligase. J Biol Chem. 2017;292:2470–84.

    Article  CAS  PubMed  Google Scholar 

  7. Svilar D, Dyavaiah M, Brown AR, Tang JB, Li J, McDonald PR, et al. Alkylation sensitivity screens reveal a conserved cross-species functionome. Mol Cancer Res. 2012;10:1580–96.

    Article  CAS  PubMed  Google Scholar 

  8. Li K, Wang F, Yang ZN, Zhang TT, Yuan YF, Zhao CX, et al. TRIB3 promotes MYC-associated lymphoma development through suppression of UBE3B-mediated MYC degradation. Nat Commun. 2020;11:6316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920–32.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Liu M, Niu Y, Wang Y. Romance of the three kingdoms in hypoxia: HIFs, epigenetic regulators, and chromatin reprogramming. Cancer Lett. 2020;495:211–23.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, et al. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: from mechanisms to therapeutics. Pharmacol Ther. 2021;221:107783.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther. 2022;240:108303.

    Article  CAS  PubMed  Google Scholar 

  13. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood. 1998;92:2260–8.

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15:501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 2006;10:413–23.

    Article  CAS  PubMed  Google Scholar 

  16. Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, et al. Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell. 2016;166:126–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000;157:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S, et al. Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 2008;68:9212–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kaelin WG Jr. The VHL tumor suppressor gene: insights into oxygen sensing and cancer. Trans Am Clin Climatol Assoc. 2017;128:298–307.

    PubMed  PubMed Central  Google Scholar 

  20. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, et al. On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models. Nature. 2016;539:107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  23. Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev. 2021;178:113909.

    Article  CAS  Google Scholar 

  24. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962;115:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao WW, Xiao RQ, Zhang WJ, Hu YR, Peng BL, Li WJ, et al. JMJD6 licenses ERalpha-dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 Co-activator complex. Mol Cell. 2018;70:340–57. e348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen HF, Zhang WJ, Huang Y, He YH, Hu GS, Wang L, et al. The dual function of KDM5C in both gene transcriptional activation and repression promotes breast cancer cell growth and tumorigenesis. Adv Sci. 2021;8:2004635.

    Article  CAS  Google Scholar 

  27. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  CAS  PubMed  Google Scholar 

  28. Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37:364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beltrao P, Albanese V, Kenner LR, Swaney DL, Burlingame A, Villen J, et al. Systematic functional prioritization of protein posttranslational modifications. Cell. 2012;150:413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, et al. Global identification of modular cullin-RING ligase substrates. Cell. 2011;147:459–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol. 2018;25:631–40.

    Article  CAS  PubMed  Google Scholar 

  32. Vogl AM, Phu L, Becerra R, Giusti SA, Verschueren E, Hinkle TB, et al. Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nat Struct Mol Biol. 2020;27:210–20.

    Article  CAS  PubMed  Google Scholar 

  33. Stukalov A, Girault V, Grass V, Karayel O, Bergant V, Urban C, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021;594:246–52.

    Article  CAS  PubMed  Google Scholar 

  34. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 2001;20:5197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu F, White SB, Zhao Q, Lee FS. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA. 2001;98:9630–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  38. Niu Y, Bao L, Chen Y, Wang C, Luo M, Zhang B, et al. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res. 2020;80:964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Zhang B, Bao L, Jin L, Yang M, Peng Y, et al. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J Clin Investig. 2018;128:1937–55.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schodel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat Genet. 2012;44:420–5. S421-422

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ, Heathcote SA, et al. HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Investig. 2009;119:2160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 2012;31:1757–70.

    Article  CAS  PubMed  Google Scholar 

  43. Ősz Á, Lánczky A, Győrffy B. Survival analysis in breast cancer using proteomic data from four independent datasets. Sci Rep. 2021;11:16787.

  44. Bernassola F, Chillemi G, Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 2019;44:1057–75.

    Article  CAS  PubMed  Google Scholar 

  45. So CL, Saunus JM, Roberts-Thomson SJ, Monteith GR. Calcium signalling and breast cancer. Semin Cell Dev Biol. 2019;94:74–83.

    Article  CAS  PubMed  Google Scholar 

  46. Tarade D, Robinson CM, Lee JE, Ohh M. HIF-2alpha-pVHL complex reveals broad genotype-phenotype correlations in HIF-2alpha-driven disease. Nat Commun. 2018;9:3359.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Paltoglou S, Roberts BJ. HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene. 2007;26:604–9.

    Article  CAS  PubMed  Google Scholar 

  48. Miyauchi Y, Kato M, Tokunaga F, Iwai K. The COP9/signalosome increases the efficiency of von Hippel-Lindau protein ubiquitin ligase-mediated hypoxia-inducible factor-alpha ubiquitination. J Biol Chem. 2008;283:16622–31.

    Article  CAS  PubMed  Google Scholar 

  49. Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, et al. A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016;76:5491–500.

    Article  CAS  PubMed  Google Scholar 

  50. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet. 2003;35:331–40.

    Article  CAS  PubMed  Google Scholar 

  52. Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M, et al. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J. 2006;25:4650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rattner A, Williams J, Nathans J. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 2019;129:3807–20.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kleszka K, Leu T, Quinting T, Jastrow H, Pechlivanis S, Fandrey J, et al. Hypoxia-inducible factor-2alpha is crucial for proper brain development. Sci Rep. 2020;10:19146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leu T, Fandrey J, Schreiber T. (H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflugers Arch. 2021;473:1287–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leiton CV, Chen E, Cutrone A, Conn K, Mellanson K, Malik DM, et al. Astrocyte HIF-2alpha supports learning in a passive avoidance paradigm under hypoxic stress. Hypoxia. 2018;6:35–56.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Chen Y, Wang C, Yang M, Wang Y, Bao L, et al. MIF is a 3’ flap nuclease that facilitates DNA replication and promotes tumor growth. Nat Commun. 2021;12:2954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang W, Liu X, Zhang Y, Deng M, Li G, Chen G, et al. USP5 promotes breast cancer cell proliferation and metastasis by stabilizing HIF2alpha. J Cell Physiol. 2022;237:2211–9.

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Zhang C, Zhao Y, Yue X, Wu H, Huang S, et al. Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun. 2017;8:1823.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95–103.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Chen Y, Bao L, Zhang B, Wang JE, Kumar A, et al. CHD4 promotes breast cancer progression as a coactivator of hypoxia-inducible factors. Cancer Res. 2020;80:3880–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank The First Affiliated Hospital of Jinan University (JNU) and JNU Animal Studies Core for excellent help. We are grateful to Tongzheng Liu (Jinan University) for VHL and Cul2 plasmids. This work was supported by grants from the National Natural Science Foundation of China (81902691 and 82203297), Taishan Scholar Young Expert Program of Shandong Province (tsqn202306154 and tsqn202306155), Shandong Excellent Young Scientists Fund Program (Overseas) (2022HWYQ-077), Shandong Provincial Natural Science Foundation (ZR2023MH252), Guangdong Basic and Applied Basic Research Foundation (2022A1515011738 and 2021A1515011224), Guangzhou Science and Technology Program (202102080147).

Author information

Authors and Affiliations

Authors

Contributions

YC supervised the project; YC, Yijie Wang, and XL designed experiments. Yijie Wang, XL, MW, Yu Wang, SW, and LJ performed experiments. Yijie Wang, XL, ML, JZ, and YC analyzed the data. Yijie Wang, XL, ML, JZ, and YC wrote the paper.

Corresponding author

Correspondence to Yan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, X., Wang, M. et al. UBE3B promotes breast cancer progression by antagonizing HIF-2α degradation. Oncogene 42, 3394–3406 (2023). https://doi.org/10.1038/s41388-023-02842-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02842-z

Search

Quick links