Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway

Abstract

Liver metastases are commonly detected in a range of malignancies including colorectal cancer (CRC), unfortunately no effectively strategies for CRC liver metastasis (CRLM). In this study, we found GPR37 expression dramatically increased in human CRLM specimens and associated poor prognosis. GPR37 depletion greatly suppressed the liver metastasis in the mouse models of CRLM. Functional experiments showed that GPR37 knockdown inhibited the growth by reducing the glycolysis of CRC cells. Also, GPR37 knockdown in tumor cells produced decreased levels of two chemokines involved in neutrophil accumulation, which abrogated neutrophil recruitment in the tumor microenvironment of CRLM. Finally, the mechanism studies revealed that GPR37 could activate the hippo pathway, thereby promoting LDHA expression and glycolysis. This leads to increased lactylation of H3K18la, resulting in up-regulation of CXCL1 and CXCL5. These results support a role of the GPR37 in modulating the tumor metabolism and microenvironment in CRLM and GPR37 could be a potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPR37 expression up-regulated in CRLM and associated with poor prognosis.
Fig. 2: Targeting GPR37 suppresses the liver metastasis in vivo.
Fig. 3: GPR37 promotes CRLM by enhancing glycolysis and neutrophil recruitment.
Fig. 4: GPR37 activate hippo pathway to enhance the glycolysis of CRC.
Fig. 5: GPR37 enhances H3K18 lactylation resulting in CXCL1 and CXCL5 upregulation.
Fig. 6: Targeting GPR37 with Hypocrellin B enhance the response to anti-PD1 therapy.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  3. Tsilimigras DI, Brodt P, Clavien PA, Muschel RJ, D’Angelica MI, Endo I, et al. Liver metastases. Nat Rev Dis Prim. 2021;7:27.

    Article  PubMed  Google Scholar 

  4. Hackl C, Neumann P, Gerken M, Loss M, Klinkhammer-Schalke M, Schlitt HJ. Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer. 2014;14:810.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bu P, Wang L, Chen KY, Rakhilin N, Sun J, Closa A, et al. miR-1269 promotes metastasis and forms a positive feedback loop with TGF-beta. Nat Commun. 2015;6:6879.

    Article  CAS  PubMed  Google Scholar 

  6. Kulaylat MN, Gibbs JF. Regional treatment of colorectal liver metastasis. J Surg Oncol. 2010;101:693–8.

    Article  PubMed  Google Scholar 

  7. Dueland S, Guren TK, Hagness M, Glimelius B, Line PD, Pfeiffer P, et al. Chemotherapy or liver transplantation for nonresectable liver metastases from colorectal cancer? Ann Surg. 2015;261:956–60.

    Article  PubMed  Google Scholar 

  8. Marazziti D, Golini E, Mandillo S, Magrelli A, Witke W, Matteoni R, et al. Altered dopamine signaling and MPTP resistance in mice lacking the Parkinson’s disease-associated GPR37/parkin-associated endothelin-like receptor. Proc Natl Acad Sci USA. 2004;101:10189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marazziti D, Gallo A, Golini E, Matteoni R, Tocchini-Valentini GP. Molecular cloning and chromosomal localization of the mouse Gpr37 gene encoding an orphan G-protein-coupled peptide receptor expressed in brain and testis. Genomics. 1998;53:315–24.

    Article  CAS  PubMed  Google Scholar 

  10. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA. 2003;100:5956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, et al. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget. 2016;7:27874–88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  13. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8:a019521.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18:90–101.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 2020;117:30628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caielli S, Cardenas J, de Jesus AA, Baisch J, Walters L, Blanck JP, et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell. 2021;184:4464–79.e4419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim SJ, Ju JS, Kang MH, Eun JW, Kim YH, Raninga PV, et al. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics. 2020;10:7974–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagano T, Tachihara M, Nishimura Y. Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer. Curr Cancer Drug Targets. 2019;19:595–630.

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 2020;583:133–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hu LP, Zhang XX, Jiang SH, Tao LY, Li Q, Zhu LL, et al. Targeting purinergic receptor P2Y2 prevents the growth of pancreatic ductal adenocarcinoma by inhibiting cancer cell glycolysis. Clin Cancer Res. 2019;25:1318–30.

    Article  CAS  PubMed  Google Scholar 

  22. Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 2011;10:47–60.

    Article  CAS  PubMed  Google Scholar 

  23. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, et al. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov. 2013;12:25–34.

    Article  CAS  PubMed  Google Scholar 

  24. Wu Q, Wang H, Zhao X, Shi Y, Jin M, Wan B, et al. Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene. 2013;32:5541–50.

    Article  CAS  PubMed  Google Scholar 

  25. Huang X, Wang Y, Nan X, He S, Xu X, Zhu X, et al. The role of the orphan G protein-coupled receptor 37 (GPR37) in multiple myeloma cells. Leuk Res. 2014;38:225–35.

    Article  CAS  PubMed  Google Scholar 

  26. Xie X, Cai X, Zhou F, Li Y, Liu Q, Cai L, et al. GPR37 promotes cancer growth by binding to CDK6 and represents a new theranostic target in lung adenocarcinoma. Pharm Res. 2022;183:106389.

    Article  CAS  Google Scholar 

  27. Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liberti MV, Locasale JW. Histone lactylation: a new role for glucose metabolism. Trends Biochem Sci. 2020;45:179–82.

    Article  CAS  PubMed  Google Scholar 

  29. Dai X, Lv X, Thompson EW, Ostrikov KK. Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet. 2022;38:124–7.

    Article  CAS  PubMed  Google Scholar 

  30. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Support for this study came from the National Natural Science Foundation of China (Grant No. 81902907), the Shanghai Pujiang Program (Grant No. 2019PJD008), Shanghai Anticancer Association-Shanghai Cancer Center, Fudan University Joint Foundation (Grant No. YJMS202011). Shenkang-Three-year Clinical Research Foundation [No. SHDC2020CR3031B] and [No. SHDC2020CR5007].

Author information

Authors and Affiliations

Authors

Contributions

JMZ, WQX, and YBW conceived and performed most of the experiments; MW, NZ, LRW, and YF accomplished some of the in vitro experiments. JMZ and TZ accomplished the in vivo studies. JMZ, LW and ARM wrote the manuscript. The paper was approved by all authors.

Corresponding authors

Correspondence to Lu Wang or Anrong Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xu, W., Wu, Y. et al. GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. Oncogene 42, 3319–3330 (2023). https://doi.org/10.1038/s41388-023-02841-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02841-0

This article is cited by

Search

Quick links