Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translation of AI into oncology clinical practice

Abstract

Artificial intelligence (AI) is a transformative technology that is capturing popular imagination and can revolutionize biomedicine. AI and machine learning (ML) algorithms have the potential to break through existing barriers in oncology research and practice such as automating workflow processes, personalizing care, and reducing healthcare disparities. Emerging applications of AI/ML in the literature include screening and early detection of cancer, disease diagnosis, response prediction, prognosis, and accelerated drug discovery. Despite this excitement, only few AI/ML models have been properly validated and fewer have become regulated products for routine clinical use. In this review, we highlight the main challenges impeding AI/ML clinical translation. We present different clinical use cases from the domains of radiology, radiation oncology, immunotherapy, and drug discovery in oncology. We dissect the unique challenges and opportunities associated with each of these cases. Finally, we summarize the general requirements for successful AI/ML implementation in the clinic, highlighting specific examples and points of emphasis including the importance of multidisciplinary collaboration of stakeholders, role of domain experts in AI augmentation, transparency of AI/ML models, and the establishment of a comprehensive quality assurance program to mitigate risks of training bias and data drifts, all culminating toward safer and more beneficial AI/ML applications in oncology labs and clinics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of the role of AI in the radiation therapy workflow [3].
Fig. 2: Factors addressing responsibility diffusion in AI-driven clinical decision-making.

Similar content being viewed by others

References

  1. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–58.

    Article  PubMed  Google Scholar 

  2. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.

    Article  CAS  PubMed  Google Scholar 

  3. Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nat Rev Cancer. 2021;21:747–52.

    Article  CAS  PubMed  Google Scholar 

  4. Meropol NJ, Donegan J, Rich AS. Progress in the application of machine learning algorithms to cancer research and care. JAMA Netw Open. 2021;4:e2116063–e2116063.

    Article  PubMed  Google Scholar 

  5. El Naqa I, Haider MA, Giger ML, Ten, Haken RK. Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. Br J Radiol. 2020;93:20190855.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kann BH, Hosny A, Aerts H. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39:916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection. Cancer Epidemiol Biomark Prev. 2020;29:2556–67.

    Article  CAS  Google Scholar 

  8. Kenner B, Chari ST, Kelsen D, Klimstra DS, Pandol SJ, Rosenthal M, et al. Artificial intelligence and early detection of pancreatic cancer: 2020 summative review. Pancreas. 2021;50:251–79.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Larsen M, Aglen CF, Lee CI, Hoff SR, Lund-Hanssen H, Lång K, et al. Artificial intelligence evaluation of 122 969 mammography examinations from a population-based screening program. Radiology. 2022;303:502–11.

    Article  PubMed  Google Scholar 

  10. Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021;21:270.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hunter B, Hindocha S, Lee RW. The role of artificial intelligence in early cancer diagnosis. Cancers. 2022;14:1524.

  12. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022;40:865–878.e866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.

    Article  CAS  PubMed  Google Scholar 

  15. Walter W, Haferlach C, Nadarajah N, Schmidts I, Kühn C, Kern W, et al. How artificial intelligence might disrupt diagnostics in hematology in the near future. Oncogene. 2021;40:4271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El Naqa I, Li R, Murphy MJ, editors. Machine learning in radiation oncology: theory and application. Springer International Publishing: Switzerland; 2015.

  17. Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020;17:771–81.

    Article  PubMed  Google Scholar 

  18. Feng M, Valdes G, Dixit N, Solberg TD. Machine learning in radiation oncology: opportunities, requirements, and needs. Front Oncol. 2018;8:110.

  19. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173:338–354.e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Q, Ren Z, Cao K, Li MM, Wang K, Zhou Y. CancerVar: an artificial intelligence–empowered platform for clinical interpretation of somatic mutations in cancer. Sci Adv. 2022;8:eabj1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Biswas N, Chakrabarti S. Artificial Intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol. 2020; 10:588221.

  22. Cui S, Ten Haken RK, El Naqa I. Integrating multiomics information in deep learning architectures for joint actuarial outcome prediction in non-small cell lung cancer patients after radiation therapy. Int J Radiat Oncol Biol Phys. 2021;110:893–904.

  23. Luo R, Sun L, Xia Y, Qin T, Zhang S, Poon H et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform. 2022;23:bbac409.

  24. Yu VL, Fagan LM, Wraith SM, Clancey WJ, Scott AC, Hannigan J, et al. Antimicrobial selection by a computer: a blinded evaluation by infectious diseases experts. JAMA. 1979;242:1279–82.

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz WB. Medicine and the computer. N Engl J Med. 1970;283:1257–64.

    Article  CAS  PubMed  Google Scholar 

  26. Chen JH, Asch SM. Machine learning and prediction in medicine - beyond the peak of inflated expectations. N Engl J Med. 2017;376:2507–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Matheny ME, Whicher D, Thadaney, Israni S. Artificial intelligence in health care: a report from the national academy of medicine. JAMA. 2020;323:509–10.

    Article  PubMed  Google Scholar 

  28. Cui S, Hope A, Dilling TJ, Dawson LA, Ten Haken R, El, et al. Artificial intelligence for outcome modeling in radiotherapy. Semin Radiat Oncol. 2022;32:351–64.

    Article  PubMed  Google Scholar 

  29. Niraula D, Cui S, Pakela J, Wei L, Luo Y, Ten Haken RK, et al. Current status and future developments in predicting outcomes in radiation oncology. Br J Radio. 2022;95:20220239.

    Article  Google Scholar 

  30. Liu M, Fang S, Dong H, Xu C. Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst. 2021;58:346–61.

    Article  Google Scholar 

  31. Venkatesh KP, Raza MM, Kvedar JC. Health digital twins as tools for precision medicine: considerations for computation, implementation, and regulation. NPJ Digit Med. 2022;5:150.

    Article  PubMed  PubMed Central  Google Scholar 

  32. El Naqa I. Murphy MJ (eds). Machine and deep learning in oncology, medical physics and radiology. 2nd edn. Switzerland: Springer Nature; 2022.

  33. Denny JC, Collins FS. Precision medicine in 2030-seven ways to transform healthcare. Cell. 2021;184:1415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carter LD, Liu D, Cantrell C. Exploring the intersection of the digital divide and artificial intelligence: a hermeneutic literature review. AIS Trans Hum-Comput Interact. 2020;12:253–75.

  35. Reddy H, Joshi S, Joshi A, Wagh V. A critical review of global digital divide and the role of technology in healthcare. Cureus. 2022;14:e29739.

    PubMed  PubMed Central  Google Scholar 

  36. Masic I, Miokovic M, Muhamedagic B. Evidence based medicine—new approaches and challenges. Acta Inform Med. 2008;16:219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 2015;13:1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. El Naqa I, Li H, Fuhrman J, Hu Q, Gorre N, Chen W, et al. Lessons learned in transitioning to AI in the medical imaging of COVID-19. J Med Imaging. 2021;8:010902–010902.

    Article  Google Scholar 

  39. Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11:e048008.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2:e200029.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020;26:1320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. BMJ. 2022;377:e070904.

    Article  PubMed  PubMed Central  Google Scholar 

  43. El Naqa I, Boone JM, Benedict SH, Goodsitt MM, Chan HP, Drukker K, et al. AI in medical physics: guidelines for publication. Med Phys. 2021;48:4711–4.

    Article  PubMed  Google Scholar 

  44. Cruz Rivera S, Liu X, Chan A-W, Denniston AK, Calvert MJ, Ashrafian H, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health. 2020;2:e549–e560.

    Article  PubMed  Google Scholar 

  45. McIntosh C, Conroy L, Tjong MC, Craig T, Bayley A, Catton C, et al. Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nat Med. 2021;27:999–1005.

    Article  CAS  PubMed  Google Scholar 

  46. El Naqa I. Prospective clinical deployment of machine learning in radiation oncology. Nat Rev Clin Oncol. 2021;18:605–6.

    Article  PubMed  Google Scholar 

  47. Gama F, Tyskbo D, Nygren J, Barlow J, Reed J, Svedberg P. Implementation frameworks for artificial intelligence translation into health care practice: scoping review. J Med Internet Res. 2022;24:e32215.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Madai VI, Higgins DC. Artificial Intelligence in healthcare: lost in translation? 2021.

  49. Mechelli A, Vieira S. From models to tools: clinical translation of machine learning studies in psychosis. NPJ Schizophr. 2020;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. El Naqa I. Perspectives on making big data analytics work for oncology. Methods. 2016;111:32–44.

    Article  CAS  PubMed  Google Scholar 

  51. Lin D, Lin H. Translating artificial intelligence into clinical practice. Ann Transl Med. 2020;8:715.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sendak MP, D’Arcy J, Kashyap S, Gao M, Nichols M, Corey KM et al. A path for translation of machine learning products into healthcare delivery. EMJ Innov. 2020;10:19–00172.

  53. Strickland E. IBM Watson, heal thyself: how IBM overpromised and underdelivered on AI health care. IEEE Spectr. 2019;56:24–31.

    Article  Google Scholar 

  54. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tadavarthi Y, Makeeva V, Wagstaff W, Zhan H, Podlasek A, Bhatia N, et al. Overview of noninterpretive artificial intelligence models for safety, quality, workflow, and education applications in radiology practice. Radiol Artif Intell. 2022;4:e210114.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology. 2017;285:923–31.

    Article  PubMed  Google Scholar 

  57. Leal JP, Rowe SP, Stearns V, Connolly RM, Vaklavas C, Liu MC, et al. Automated lesion detection of breast cancer in [(18)F] FDG PET/CT using a novel AI-Based workflow. Front Oncol. 2022;12:1007874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Do HM, Spear LG, Nikpanah M, Mirmomen SM, Machado LB, Toscano AP, et al. Augmented radiologist workflow improves report value and saves time: a potential model for implementation of artificial intelligence. Acad Radio. 2020;27:96–105.

    Article  Google Scholar 

  59. Folio LR, Choi MM, Solomon JM, Schaub NP. Automated registration, segmentation, and measurement of metastatic melanoma tumors in serial CT scans. Acad Radio. 2013;20:604–13.

    Article  Google Scholar 

  60. Xu J, Greenspan H, Napel S, Rubin DL. Automated temporal tracking and segmentation of lymphoma on serial CT examinations. Med Phys. 2011;38:5879–86.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ben-Cohen A, Klang E, Diamant I, Rozendorn N, Amitai MM, Greenspan H. Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. J Med Imaging. 2015;2:034502.

    Article  Google Scholar 

  62. Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, et al. Artificial intelligence in magnetic resonance guided radiotherapy: medical and physical considerations on state of art and future perspectives. Phys Med. 2021;85:175–91.

    Article  PubMed  Google Scholar 

  63. Tarhini A, Kudchadkar RR. Predictive and on-treatment monitoring biomarkers in advanced melanoma: moving toward personalized medicine. Cancer Treat Rev. 2018;71:8–18.

    Article  CAS  PubMed  Google Scholar 

  64. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Investig. 2017;127:2930–40.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.

    Article  CAS  PubMed  Google Scholar 

  66. Bolen CR, McCord R, Huet S, Frampton GM, Bourgon R, Jardin F, et al. Mutation load and an effector T-cell gene signature may distinguish immunologically distinct and clinically relevant lymphoma subsets. Blood Adv. 2017;1:1884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A, et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol. 2011;179:37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep. 2012;2:765.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu D, Lin JR, Robitschek EJ, Kasumova GG, Heyde A, Shi A, et al. Evolution of delayed resistance to immunotherapy in a melanoma responder. Nat Med. 2021;27:985–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377:2500–1.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355:eaaf8399.

  72. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iafolla MAJ, Yang C, Chandran V, Pintilie M, Li Q, Bedard PL, et al. Predicting toxicity and response to pembrolizumab through germline genomic HLA Class 1 analysis. JNCI Cancer Spectr. 2021;5:pkaa115.

  74. Postow MA, Manuel M, Wong P, Yuan J, Dong Z, Liu C, et al. Peripheral T cell receptor diversity is associated with clinical outcomes following ipilimumab treatment in metastatic melanoma. J Immunother Cancer. 2015;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sayaman RW, Saad M, Thorsson V, Hu D, Hendrickx W, Roelands J, et al. Germline genetic contribution to the immune landscape of cancer. Immunity. 2021;54:367–86.e368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26:80–93.

    Article  CAS  PubMed  Google Scholar 

  77. Park Y, Jackson GP, Foreman MA, Gruen D, Hu J, Das AK. Evaluating artificial intelligence in medicine: phases of clinical research. JAMIA Open. 2020;3:326–31.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12:3049–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18:495–6.

    Article  CAS  PubMed  Google Scholar 

  81. Özçelik R, van Tilborg D, Jiménez-Luna J, Grisoni F. Structure-Based Drug Discovery with Deep Learning. Chembiochem. 2023;24:e202200776. https://doi.org/10.1002/cbic.202200776.

    Article  CAS  PubMed  Google Scholar 

  82. Jayatunga MKP, Xie W, Ruder L, Schulze U, Meier C. AI in small-molecule drug discovery: a coming wave? Nat Rev Drug Discov. 2022;21:175–6.

    Article  CAS  PubMed  Google Scholar 

  83. Noé F, Tkatchenko A, Müller K-R, Clementi C. Machine learning for molecular simulation. Annu Rev Phys Chem. 2020;71:361–90.

    Article  PubMed  Google Scholar 

  84. Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32:1202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A’Court C, et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J Med Internet Res. 2017;19:e367.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liu Y, Ling Z, Huo B, Wang B, Chen T, Mouine E. Building a platform for machine learning operations from open source frameworks. IFAC-PapersOnLine. 2020;53:704–9.

    Article  Google Scholar 

  87. Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making. Front Digit Health. 2021;3:645232.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Marcus G. Deep learning: a critical appraisal. 2018. https://doi.org/10.48550/arXiv.1801.00631.

  89. Luo Y, Cuneo KC, Lawrence TS, Matuszak MM, Dawson LA, Niraula D, et al. A human-in-the-loop based Bayesian network approach to improve imbalanced radiation outcomes prediction for hepatocellular cancer patients with stereotactic body radiotherapy. Front Oncol. 2022;12:1061024. https://doi.org/10.3389/fonc.2022.1061024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El Naqa I, Kosorok MR, Jin J, Mierzwa M, Ten Haken RK. Prospects and challenges for clinical decision support in the era of big data. JCO Clin Cancer Inf. 2018;2:CCI.18.00002.

    Google Scholar 

  91. Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CML, et al. ‘Rapid Learning health care in oncology’—an approach towards decision support systems enabling customised radiotherapy’. Radiother Oncol. 2013;109:159–64.

    Article  PubMed  Google Scholar 

  92. Lambin P, Zindler J, Vanneste B, van de Voorde L, Jacobs M, Eekers D, et al. Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol. 2015;54:1289–1300.

    Article  PubMed  Google Scholar 

  93. Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zerka F, Barakat S, Walsh S, Bogowicz M, Leijenaar RTH, Jochems A, et al. Systematic review of privacy-preserving distributed machine learning from federated databases in health care. JCO Clin Cancer Inform. 2020;4:184–200.

  95. Jochems A, Deist TM, El Naqa I, Kessler M, Mayo C, Reeves J, et al. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. Int J Radiat Oncol Biol Phys. 2017;99:344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jochems A, El-Naqa I, Kessler M, Mayo CS, Jolly S, Matuszak M, et al. A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncol. 2018;57:226–30.

    Article  CAS  PubMed  Google Scholar 

  97. Luo Y, Tseng HH, Cui S, Wei L, Ten Haken RK, El Naqa I. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open. 2019;1:20190021.

    PubMed  PubMed Central  Google Scholar 

  98. Fuhrman JD, Gorre N, Hu Q, Li H, El Naqa I, Giger ML. A review of explainable and interpretable AI with applications in COVID-19 imaging. Med Phys. 2022;49:1–14.

    Article  CAS  PubMed  Google Scholar 

  99. (FDA) FaDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)- based software as a medical device (SaMD). Food and Drug Administration, 2019.

  100. FDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) - discussion paper and request for feedback, 2021.

  101. The National AI Initiative Act 2020.

  102. Bleher H, Braun M. Diffused responsibility: attributions of responsibility in the use of AI-driven clinical decision support systems. AI Ethics. 2022;2:747–61.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain? 2017. https://doi.org/10.48550/arXiv.1712.09923.

  104. Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med. 2018;1:40.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep learning for identifying metastatic breast cancer. 2016. https://doi.org/10.48550/arXiv.1606.05718.

  106. Wu X, Xiao L, Sun Y, Zhang J, Ma T, He L. A survey of human-in-the-loop for machine learning. Future Gener Comput Syst. 2022;135:364–81.

    Article  Google Scholar 

  107. Ghai B, Mueller K. D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling Algorithmic Bias. IEEE Trans Vis Comput Graph. 2023;29:473–82.

    PubMed  Google Scholar 

  108. Vasey B, Ursprung S, Beddoe B, Taylor EH, Marlow N, Bilbro N, et al. Association of clinician diagnostic performance with machine learning–based decision support systems: a systematic review. JAMA Netw Open. 2021;4:e211276–e211276.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ. 2021;374:n1872.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Brocklehurst P, Field D, Greene K, Juszczak E, Keith R, Kenyon S, et al. Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Lancet. 2017;389:1719–29.

    Article  Google Scholar 

  111. Dalkey N, Helmer O. An experimental application of the DELPHI method to the use of experts. Manag Sci. 1963;9:458–67.

    Article  Google Scholar 

  112. Rowe G, Wright G. Expert opinions in forecasting: the role of the Delphi technique. In: Armstrong JS (ed). Principles of forecasting: a handbook for researchers and practitioners. US: Boston, MA: Springer, 2001, p. 125–44.

  113. Biswas S, Corti L, Buijsman S, Yang J. CHIME: Causal Human-in-the-Loop Model Explanations. Proc AAAI Conf Hum Comput Crowdsourcing. 2022;10:27–39.

    Google Scholar 

  114. Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, et al. AAPM medical physics practice guideline 5.a.: commissioning and qa of treatment planning dose calculations—megavoltage photon and electron beams. J Appl Clin Med Phys. 2015;16:14–34. https://doi.org/10.1120/jacmp.v16i5.5768.

    Article  PubMed  PubMed Central  Google Scholar 

  115. El Naqa I, Moran, Jean M, Ten Haken RK. Machine learning in radiation oncology: what have we learned so far? In: van Dyk J (ed). The modern technology of radiation oncology (Volume 4) Madison, WI, USA: Medical Physics Publishing, 2020.

Download references

Acknowledgements

This work was partly supported by National Institute of Health (NIH) grant R01-CA233487 and its supplement (CA233487-05S1). IEN and KP would like to acknowledge support from the Center for Advanced Studies at Ludwig-Maximilians-Universität München (CAS LMU fellowship).

Author information

Authors and Affiliations

Authors

Contributions

IEN conceived the study and drafted the outline. All authors contributed to the writeup of the manuscript.

Corresponding author

Correspondence to Issam El Naqa.

Ethics declarations

Competing interests

IEN is on the scientific advisory of Endectra, LLC., act as deputy editor for the journal of Medical Physics and receives funding from NIH and DoD. DER is on the Board of Directors for NanoString technologies, Inc. LRF Research agreement: Philips Healthcare (ended Aug 2021). Patents (no royalties since NIH and military owned). Author royalties, Springer. AAT reports contracted research grants with institution from Bristol Myers Squib, Genentech-Roche, Regeneron, Sanofi-Genzyme, Nektar, Clinigen, Merck, Acrotech, Pfizer, Checkmate, OncoSec; personal consultant/advisory board fees from Bristol Myers Squibb, Merck, Easai, Instil Bio Clinigin, Regeneron, Sanofi-Genzyme, Novartis, Partner Therapeutics, Genentech/Roche, BioNTech, Concert AI, AstraZeneca outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Naqa, I., Karolak, A., Luo, Y. et al. Translation of AI into oncology clinical practice. Oncogene 42, 3089–3097 (2023). https://doi.org/10.1038/s41388-023-02826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02826-z

This article is cited by

Search

Quick links