Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucose-mediated N-glycosylation of RPTPα affects its subcellular localization and Src activation

Abstract

Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RPTPα is glycosylated in cancer cells.
Fig. 2: Glucose is directly involved in the regulation of RPTPα N-glycosylation.
Fig. 3: N-glycosylation enhances the tumor-promoting ability of RPTPα.
Fig. 4: Non-N-glycosylation RPTPα accumulates in intracellular compartments.
Fig. 5: WT-RPTPα, better than 7NQ-RPTPα, binds with Src in vivo in cells.
Fig. 6: N-glycosylation of RPTPα affects dephosphorylation of Src.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

References

  1. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.

    Article  CAS  PubMed  Google Scholar 

  2. Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–46.

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, et al. Cloning of three human tyrosine phosphatases reveals a multigene family of receptor-linked protein-tyrosine-phosphatases expressed in brain. Proc Natl Acad Sci USA. 1990;87:7000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Pallen CJ. The receptor-like protein tyrosine phosphatase HPTP alpha has two active catalytic domains with distinct substrate specificities. EMBO J. 1991;10:3231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  6. Sonnenburg ED, Bilwes A, Hunter T, Noel JP. The structure of the membrane distal phosphatase domain of RPTPalpha reveals interdomain flexibility and an SH2 domain interaction region. Biochemistry. 2003;42:7904–14.

    Article  CAS  PubMed  Google Scholar 

  7. Daum G, Regenass S, Sap J, Schlessinger J, Fischer EH. Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation. J Biol Chem. 1994;269:10524–8.

    Article  CAS  PubMed  Google Scholar 

  8. Blanchetot C, Tertoolen LG, den Hertog J. Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J. 2002;21:493–03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pallen CJ. Protein tyrosine phosphatase alpha (PTPalpha): a Src family kinase activator and mediator of multiple biological effects. Curr Top Med Chem. 2003;3:821–35.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng XM, Wang Y, Pallen CJ. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature. 1992;359:336–9.

    Article  CAS  PubMed  Google Scholar 

  11. Su J, Muranjan M, Sap J. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr Biol. 1999;9:505–11.

    Article  CAS  PubMed  Google Scholar 

  12. Huang J, Yao L, Xu R, Wu H, Wang M, White BS, et al. Activation of Src and transformation by an RPTPalpha splice mutant found in human tumours. EMBO J. 2011;30:3200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A, et al. A global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell. 2017;65:347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    Article  CAS  PubMed  Google Scholar 

  15. Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5:a013359.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hebert DN, Lamriben L, Powers ET, Kelly JW. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol. 2014;10:902–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stanley P. Golgi glycosylation. Cold Spring Harb Perspect Biol. 2011;3:a005199.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21:729–49.

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues JG, Balmana M, Macedo JA, Pocas J, Fernandes A, de-Freitas-Junior JCM, et al. Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. 2018;333:46–57.

    Article  CAS  PubMed  Google Scholar 

  20. Carvalho S, Catarino TA, Dias AM, Kato M, Almeida A, Hessling B, et al. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene. 2016;35:1619–31.

    Article  CAS  PubMed  Google Scholar 

  21. Lee HH, Wang YN, Xia W, Chen CH, Rau KM, Ye L, et al. Removal of N-Linked Glycosylation Enhances PD-L1 Detection and Predicts Anti-PD-1/PD-L1 Therapeutic Efficacy. Cancer Cell. 2019;36:168–78.e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu DM, Li XH, Mom V, Lu ZH, Liao XW, Han Y, et al. N-glycosylation mutations within hepatitis B virus surface major hydrophilic region contribute mostly to immune escape. J Hepatol. 2014;60:515–22.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng C, Ru P, Geng F, Liu J, Yoo JY, Wu X, et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell. 2015;28:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salt IP, Johnson G, Ashcroft SJ, Hardie DG. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J. 1998;335:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vajaria BN, Patel PS. Glycosylation: a hallmark of cancer? Glycoconj J. 2017;34:147–56.

    Article  CAS  PubMed  Google Scholar 

  26. Prescher JA, Bertozzi CR. Chemical technologies for probing glycans. Cell. 2006;126:851–4.

    Article  CAS  PubMed  Google Scholar 

  27. Cao L, Diedrich JK, Ma Y, Wang N, Pauthner M, Park SR, et al. Global site-specific analysis of glycoprotein N-glycan processing. Nat Protoc. 2018;13:1196–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Li W, Lu H, Liu Y. Quantification of N-glycosylation site occupancy status based on labeling/label-free strategies with LC-MS/MS. Talanta. 2017;170:509–13.

    Article  CAS  PubMed  Google Scholar 

  29. Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology. 2013;23:622–33.

    Article  CAS  PubMed  Google Scholar 

  30. Pinho SS, Seruca R, Gartner F, Yamaguchi Y, Gu J, Taniguchi N, et al. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci. 2011;68:1011–20.

    Article  CAS  PubMed  Google Scholar 

  31. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71:606–20.e607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Truffi M, Dubreuil V, Liang X, Vacaresse N, Nigon F, Han SP, et al. RPTPalpha controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin. J Cell Sci. 2014;127:2420–32.

    CAS  PubMed  Google Scholar 

  33. Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Ren Physiol. 2009;296:F459–69.

    Article  CAS  Google Scholar 

  34. Vagin O, Turdikulova S, Sachs G. The H,K-ATPase beta subunit as a model to study the role of N-glycosylation in membrane trafficking and apical sorting. J Biol Chem. 2004;279:39026–34.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng XM, Resnick RJ, Shalloway D. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J. 2000;19:964–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang J, Yan J, Zhang J, Zhu S, Wang Y, Shi T, et al. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun. 2012;3:911.

    Article  PubMed  Google Scholar 

  38. den Hertog J, Tracy S, Hunter T. Phosphorylation of receptor protein-tyrosine phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein GRB-2 in vivo. EMBO J. 1994;13:3020–32.

    Article  Google Scholar 

  39. den Hertog J, Hunter T. Tight association of GRB2 with receptor protein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains. EMBO J. 1996;15:3016–27.

    Article  Google Scholar 

  40. den Hertog J, Pals CE, Peppelenbosch MP, Tertoolen LG, de Laat SW, Kruijer W. Receptor protein tyrosine phosphatase alpha activates pp60c-src and is involved in neuronal differentiation. EMBO J. 1993;12:3789–98.

    Article  Google Scholar 

  41. Jiang G, den Hertog J, Hunter T. Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface. Mol Cell Biol. 2000;20:5917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang G, den Hertog J, Su J, Noel J, Sap J, Hunter T. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha. Nature. 1999;401:606–10.

    Article  CAS  PubMed  Google Scholar 

  43. Ponniah S, Wang DZ, Lim KL, Pallen CJ. Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Curr Biol. 1999;9:535–8.

    Article  CAS  PubMed  Google Scholar 

  44. Buist A, Blanchetot C, Tertoolen LG, den Hertog J. Identification of p130cas as an in vivo substrate of receptor protein-tyrosine phosphatase alpha. J Biol Chem. 2000;275:20754–61.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng XM, Shalloway D. Two mechanisms activate PTPalpha during mitosis. EMBO J. 2001;20:6037–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vacaru AM, den Hertog J. Serine dephosphorylation of receptor protein tyrosine phosphatase alpha in mitosis induces Src binding and activation. Mol Cell Biol. 2010;30:2850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vacaru AM, den Hertog J. Catalytically active membrane-distal phosphatase domain of receptor protein-tyrosine phosphatase alpha is required for Src activation. FEBS J. 2010;277:1562–70.

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  49. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  50. Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 2010;1804:581–91.

    Article  CAS  PubMed  Google Scholar 

  51. Love DC, Hanover JA. The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci STKE. 2005;2005:re13.

    Article  PubMed  Google Scholar 

  52. Koutsioulis D, Landry D, Guthrie EP. Novel endo-alpha-N-acetylgalactosaminidases with broader substrate specificity. Glycobiology. 2008;18:799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang X, Wang Y. Glycosylation quality control by the golgi structure. J Mol Biol. 2016;428:3183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lai X, Chen Q, Zhu C, Deng R, Zhao X, Chen C, et al. Regulation of RPTPalpha-c-Src signalling pathway by miR-218. FEBS J. 2015;282:2722–34.

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Deng R, Cui N, Zhang H, Liu T, Dou J, et al. Src SUMOylation inhibits tumor growth via decreasing FAK Y925 phosphorylation. Neoplasia. 2017;19:961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec (Hoboken). 2013;296:378–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would thank Prof. xinmin Zheng for manuscript revision, Prof. Shengfang Ge, Yan Zhang, Liang Zhang and Dr. Jingdong Xue for expert technical assistance. This study was supported by grants from the National Natural Science Foundation of China (No. 82073043 and 81672709 to JH, 82230100 and 32271310 to JY).

Author information

Authors and Affiliations

Authors

Contributions

JH and JY supervised the project. JH and JF designed the experiments. JF performed most experiments in the project. YZ performed most experiments in revision. JF and YZ contributed equally. CH, RL, JY, RC, YW and XZ helped with all the experiments. JH, JY and JF discussed the results. JH and JF wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianxiu Yu or Jian Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Zhang, Y., Huang, C. et al. Glucose-mediated N-glycosylation of RPTPα affects its subcellular localization and Src activation. Oncogene 42, 1058–1071 (2023). https://doi.org/10.1038/s41388-023-02622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02622-9

Search

Quick links