Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage

Abstract

Ewing sarcoma breakpoint region 1 (EWSR1) is a member of FET (FUS/EWSR1/TAF15) RNA-binding family of proteins. The Ewing sarcoma oncoprotein EWS-FLI1 has been extensively studied, while much less is known about EWSR1 itself, especially the potential role of EWSR1 in response to DNA damage. Here, we found that UV irradiation induces acetylation of EWSR1, which is required for its nucleoli translocation. We identified K423, K432, K438, K640, and K643 as the major acetylation sites, p300/CBP and HDAC3/HDAC10 as the major acetyltransferases and deacetylases, respectively. Mechanically, UV-induced EWSR1 acetylation repressed its interaction with spliceosomal component U1C, which caused abnormal splicing of CHK2, suppressing the activity of CHK2 in response to UV irradiation. Taken together, our findings uncover acetylation as a novel regulatory modification of EWSR1, and is essential for its function in DNA damage response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EWSR1 acetylation promotes its nucleolus translocation upon UV irradiation.
Fig. 2: EWSR1 is mainly acetylated by acetyltransferase p300.
Fig. 3: HDAC3 deacetylates EWSR1.
Fig. 4: EWSR1 is acetylated at many sites by p300.
Fig. 5: Hyperacetylated EWSR1 regulates alternative splicing-mediated CHK2 expression to repress cell growth.
Fig. 6: Reduced CHK2 in hyperacetylated EWSR1 cells is mediated by spliceosomal factor U1C.

Similar content being viewed by others

References

  1. Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Prim. 2018;4:5.

    Article  PubMed  Google Scholar 

  2. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  3. Alex D, Lee KA. RGG-boxes of the EWS oncoprotein repress a range of transcriptional activation domains. Nucleic Acids Res. 2005;33:1323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol. 1998;18:1489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li H, Watford W, Li C, Parmelee A, Bryant MA, Deng C, et al. Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Investig. 2007;117:1314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  7. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.

    Article  CAS  PubMed  Google Scholar 

  8. Hardin JD, Boast S, Schwartzberg PL, Lee G, Alt FW, Stall AM, et al. Bone marrow B lymphocyte development in c-abl-deficient mice. Cell Immunol. 1995;165:44–54.

    Article  CAS  PubMed  Google Scholar 

  9. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86:159–71.

    Article  CAS  PubMed  Google Scholar 

  10. Hurov KE, Cotta-Ramusino C, Elledge SJ. A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 2010;24:1939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee SG, Kim N, Kim SM, Park IB, Kim H, Kim S, et al. Ewing sarcoma protein promotes dissociation of poly(ADP-ribose) polymerase 1 from chromatin. EMBO Rep. 2020;21:e48676.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Spahn L, Petermann R, Siligan C, Schmid JA, Aryee DN, Kovar H. Interaction of the EWS NH2 terminus with BARD1 links the Ewing’s sarcoma gene to a common tumor suppressor pathway. Cancer Res. 2002;62:4583–7.

    CAS  PubMed  Google Scholar 

  13. Paronetto MP, Miñana B, Valcárcel J. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol Cell. 2011;43:353–68.

    Article  CAS  PubMed  Google Scholar 

  14. Mustofa MK, Tanoue Y, Tateishi C, Vaziri C, Tateishi S. Roles of Chk2/CHEK2 in guarding against environmentally induced DNA damage and replication-stress. Environ Mol Mutagen. 2020;61:730–5.

    Article  CAS  PubMed  Google Scholar 

  15. Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol. 2014;6:442–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci. 2010;35:208–19.

    Article  CAS  PubMed  Google Scholar 

  17. Da Costa IC, Schmidt CK. Ubiquitin-like proteins in the DNA damage response: the next generation. Essays Biochem. 2020;64:737–52.

    Article  CAS  PubMed  Google Scholar 

  18. Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011;25:409–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deloulme JC, Prichard L, Delattre O, Storm DR. The prooncoprotein EWS binds calmodulin and is phosphorylated by protein kinase C through an IQ domain. J Biol Chem. 1997;272:27369–77.

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Lee JM, Branton PE, Pelletier J. Modification of EWS/WT1 functional properties by phosphorylation. Proc Natl Acad Sci USA. 1999;96:14300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim J, Lee JM, Branton PE, Pelletier J. Modulation of EWS/WT1 activity by the v-Src protein tyrosine kinase. FEBS Lett. 2000;474:121–8.

    Article  CAS  PubMed  Google Scholar 

  22. Guinamard R, Fougereau M, Seckinger P. The SH3 domain of Bruton’s tyrosine kinase interacts with Vav, Sam68 and EWS. Scand J Immunol. 1997;45:587–95.

    Article  CAS  PubMed  Google Scholar 

  23. Klevernic IV, Morton S, Davis RJ, Cohen P. Phosphorylation of Ewing’s sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage. Biochem J. 2009;418:625–34.

    Article  CAS  PubMed  Google Scholar 

  24. Araya N, Hiraga H, Kako K, Arao Y, Kato S, Fukamizu A. Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1. Biochem Biophys Res Commun. 2005;329:653–60.

    Article  CAS  PubMed  Google Scholar 

  25. Kim JD, Kako K, Kakiuchi M, Park GG, Fukamizu A. EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int J Mol Med. 2008;22:309–15.

    CAS  PubMed  Google Scholar 

  26. Takahama K, Kino K, Arai S, Kurokawa R, Oyoshi T. Identification of Ewing’s sarcoma protein as a G-quadruplex DNA- and RNA-binding protein. FEBS J. 2011;278:988–98.

    Article  CAS  PubMed  Google Scholar 

  27. Bachmaier R, Aryee DN, Jug G, Kauer M, Kreppel M, Lee KA, et al. O-GlcNAcylation is involved in the transcriptional activity of EWS-FLI1 in Ewing’s sarcoma. Oncogene. 2009;28:1280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994;265:615–21.

    Article  CAS  PubMed  Google Scholar 

  29. Paronetto MP. Ewing sarcoma protein: a key player in human cancer. Int J Cell Biol. 2013;2013:642853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Muto Y, Pomeranz Krummel D, Oubridge C, Hernandez H, Robinson CV, Neuhaus D, et al. The structure and biochemical properties of the human spliceosomal protein U1C. J Mol Biol. 2004;341:185–98.

    Article  CAS  PubMed  Google Scholar 

  31. Knoop LL, Baker SJ. The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem. 2000;275:24865–71.

    Article  CAS  PubMed  Google Scholar 

  32. Du H, Rosbash M. The U1 snRNP protein U1C recognizes the 5’ splice site in the absence of base pairing. Nature. 2002;419:86–90.

    Article  CAS  PubMed  Google Scholar 

  33. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell. 2005;120:497–512.

    Article  CAS  PubMed  Google Scholar 

  34. Tanoue Y, Toyoda T, Sun J, Mustofa MK, Tateishi C, Endo S, et al. Differential roles of Rad18 and Chk2 in genome maintenance and skin carcinogenesis following UV exposure. J Investig Dermatol. 2018;138:2550–7.

    Article  CAS  PubMed  Google Scholar 

  35. Brooks CL, Gu W. The impact of acetylation and deacetylation on the p53 pathway. Protein Cell. 2011;2:456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun Y, Xu Y, Roy K, Price BD. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol. 2007;27:8502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dutto I, Scalera C, Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci. 2018;75:1325–38.

    Article  CAS  PubMed  Google Scholar 

  38. Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M. DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem. 2002;277:50934–40.

    Article  CAS  PubMed  Google Scholar 

  39. Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008;283:7590–8.

    Article  CAS  PubMed  Google Scholar 

  40. Shandilya J, Swaminathan V, Gadad SS, Choudhari R, Kodaganur GS, Kundu TK. Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol. 2009;29:5115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Das S, Cong R, Shandilya J, Senapati P, Moindrot B, Monier K, et al. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors. FEBS Lett. 2013;587:417–24.

    Article  CAS  PubMed  Google Scholar 

  42. Muñoz MJ, Pérez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell. 2009;137:708–20.

    Article  PubMed  CAS  Google Scholar 

  43. Dutertre M, Sanchez G, De Cian MC, Barbier J, Dardenne E, Gratadou L, et al. Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol. 2010;17:1358–66.

    Article  CAS  PubMed  Google Scholar 

  44. Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842–7.

    Article  CAS  PubMed  Google Scholar 

  45. Berge EO, Staalesen V, Straume AH, Lillehaug JR, Lønning PE. Chk2 splice variants express a dominant-negative effect on the wild-type Chk2 kinase activity. Biochim Biophys Acta. 2010;1803:386–95.

    Article  CAS  PubMed  Google Scholar 

  46. Staalesen V, Falck J, Geisler S, Bartkova J, Børresen-Dale AL, Lukas J, et al. Alternative splicing and mutation status of CHEK2 in stage III breast cancer. Oncogene. 2004;23:8535–44.

    Article  CAS  PubMed  Google Scholar 

  47. Ren X, Long M, Li Z, Wu B, Jin T, Tu C, et al. Oncogene PRR14 promotes breast cancer through activation of PI3K signal pathway and inhibition of CHEK2 pathway. Cell Death Dis. 2020;11:464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Srivastava A, Giangiobbe S, Skopelitou D, Miao B, Paramasivam N, Diquigiovanni C, et al. Whole genome sequencing prioritizes CHEK2, EWSR1, and TIAM1 as possible predisposition genes for familial non-medullary thyroid cancer. Front Endocrinol. 2021;12:600682.

    Article  Google Scholar 

  49. Han C, Khodadadi-Jamayran A. SF3B1 homeostasis is critical for survival and therapeutic response in T cell leukemia. Sci Adv. 2022;8:eabj8357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schwartz JC, Cech TR, Parker RR. Biochemical properties and biological functions of FET proteins. Annu Rev Biochem. 2015;84:355–79.

    Article  CAS  PubMed  Google Scholar 

  51. Rösel TD, Hung LH, Medenbach J, Donde K, Starke S, Benes V, et al. RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation. EMBO J. 2011;30:1965–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (81874147, 82172959). We thank core facility at Peking University Health Science Center for experiment help.

Author information

Authors and Affiliations

Authors

Contributions

TZ and JL designed the research; TZ, ZW, ML, LL, XY, YZ, JB, and YL performed the experiments; TZ, ZW, MR, CS, and WW analyzed data; TZ, HT, JL drafted the manuscript; TZ and JL modified the manuscript.

Corresponding authors

Correspondence to Hongyu Tan or Jianyuan Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, Z., Liu, M. et al. Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene 41, 3694–3704 (2022). https://doi.org/10.1038/s41388-022-02383-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02383-x

This article is cited by

Search

Quick links