Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mouse HP1 proteins are essential for preventing liver tumorigenesis

Abstract

Chromatin organization is essential for appropriate interpretation of the genetic information. Here, we demonstrated that the chromatin-associated proteins HP1 are dispensable for hepatocytes survival but are essential within hepatocytes to prevent liver tumor development in mice with HP1β being pivotal in these functions. Yet, we found that the loss of HP1 per se is not sufficient to induce cell transformation but renders cells more resistant to specific stress such as the expression of oncogenes and thus in fine, more prone to cell transformation. Molecular characterization of HP1-Triple KO premalignant livers and BMEL cells revealed that HP1 are essential for the maintenance of heterochromatin organization and for the regulation of specific genes with most of them having well characterized functions in liver functions and homeostasis. We further showed that some specific retrotransposons get reactivated upon loss of HP1, correlating with overexpression of genes in their neighborhood. Interestingly, we found that, although HP1-dependent genes are characterized by enrichment H3K9me3, this mark does not require HP1 for its maintenance and is not sufficient to maintain gene repression in absence of HP1. Finally, we demonstrated that the loss of TRIM28 association with HP1 recapitulated several phenotypes induced by the loss of HP1 including the reactivation of some retrotransposons and the increased incidence of liver cancer development. Altogether, our findings indicate that HP1 proteins act as guardians of liver homeostasis to prevent tumor development by modulating multiple chromatin-associated events within both the heterochromatic and euchromatic compartments, partly through regulation of the corepressor TRIM28 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HP1 proteins are essential to prevent tumor development in liver.
Fig. 2: HP1-TKO hepatic cells are viable and have increased potential to cellular transformation upon oncogenic stress.
Fig. 3: HP1 are essential for the maintenance of heterochromatin marks but not to regulate the expression of major satellites.
Fig. 4: HP1 are essential regulators of gene expression in liver.
Fig. 5: HP1 are required for silencing specific endogenous retroviruses (ERVs) in hepatocytes.
Fig. 6: The loss of association between HP1 and TRIM28 partially recapitulates the phenotypes induced by the loss of HP1.

Similar content being viewed by others

References

  1. Prakash K, Fournier D. Evidence for the implication of the histone code in building the genome structure. BioSystems. 2018;164:49–59.

    Article  CAS  PubMed  Google Scholar 

  2. Koschmann C, Nunez FJ, Mendez F, Brosnan-Cashman JA, Meeker AK, Lowenstein PR, et al. Mutated chromatin regulatory factors as tumor drivers in cancer. Cancer Res. 2017;77:227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mirabella AC, Foster BM, Bartke T. Chromatin deregulation in disease. Chromosoma. 2016;125:75–93.

    Article  CAS  PubMed  Google Scholar 

  4. Mai S. The 3D cancer nucleus. Genes Chromosomes Cancer. 2018. https://doi.org/10.1002/gcc.22720.

  5. Janssen A, Colmenares SU, Karpen GH. Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol. 2018. https://doi.org/10.1146/annurev-cellbio-100617-062653.

  6. James TC, Elgin SC. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986;6:3862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eissenberg JC, Elgin SCR. HP1a: a structural chromosomal protein regulating transcription. Trends Genet. 2014;30:103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lomberk G, Wallrath L, Urrutia R. The heterochromatin protein 1 family. Genome Biol. 2006;7:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dinant C, Luijsterburg MS. The emerging role of HP1 in the DNA damage response. Mol Cell Biol. 2009;29:6335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fanti L, Pimpinelli S. HP1: a functionally multifaceted protein. Curr Opin Genet Dev. 2008;18:169–74.

    Article  CAS  PubMed  Google Scholar 

  11. Nishibuchi G, Nakayama J. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem. 2014;156:11–20.

    Article  PubMed  Google Scholar 

  12. Shi S, Larson K, Guo D, Lim SJ, Dutta P, Yan S-J, et al. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol. 2008;10:489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosch-Presegué L, Raurell-Vila H, Thackray JK, González J, Casal C, Kane-Goldsmith N, et al. Mammalian HP1 isoforms have specific roles in heterochromatin structure and organization. Cell Rep. 2017;21:2048–57.

    Article  CAS  PubMed  Google Scholar 

  14. Dialynas GK, Vitalini MW, Wallrath LL. Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat Res. 2008;647:13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther. 2015;16:189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M, et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci USA. 2011;108:8212–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fan DN-Y, Tsang FH-C, Tam AH-K, Au SL-K, Wong CC-L, Wei L, et al. Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology. 2013;57:637–47.

    Article  CAS  PubMed  Google Scholar 

  18. Bojkowska K, Aloisio F, Cassano M, Kapopoulou A, Santoni de Sio F, Zangger N, et al. Liver-specific ablation of Krüppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma. Hepatology. 2012;56:1279–90.

    Article  CAS  PubMed  Google Scholar 

  19. Khetchoumian K, Teletin M, Tisserand J, Mark M, Herquel B, Ignat M, et al. Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat Genet. 2007;39:1500–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut. 2016;65:1895–905.

    Article  CAS  PubMed  Google Scholar 

  21. Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249–53.

    Article  CAS  PubMed  Google Scholar 

  22. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem. 1999;274:305–15.

    Article  CAS  PubMed  Google Scholar 

  23. Weisend CM, Kundert JA, Suvorova ES, Prigge JR, Schmidt EE. Cre activity in fetal albCre mouse hepatocytes: Utility for developmental studies. Genesis. 2009;47:789–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuo LJ, Yang L-X. Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22:305–9.

    CAS  PubMed  Google Scholar 

  25. Niu Z-S, Niu X-J, Wang W-H. Genetic alterations in hepatocellular carcinoma: an update. World J Gastroenterol. 2016;22:9069–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed  Google Scholar 

  27. Strick-Marchand H, Weiss MC. Inducible differentiation and morphogenesis of bipotential liver cell lines from wild-type mouse embryos. Hepatology. 2002;36:794–804.

    Article  CAS  PubMed  Google Scholar 

  28. Guengerich FP. Cytochrome P450 research and the journal of biological chemistry. J Biol Chem. 2018. https://doi.org/10.1074/jbc.TM118.004144.

  29. Bhattacharyya S, Sinha K, Sil PC. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress. Curr Drug Metab. 2014;15:719–42.

    Article  CAS  PubMed  Google Scholar 

  30. Park JW, Reed JR, Brignac-Huber LM, Backes WL. Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem J. 2014;464:241–9.

    Article  CAS  PubMed  Google Scholar 

  31. Paik Y-H, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20:2854–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang P, Wang Y, Macfarlan TS. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet. 2017;33:871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Geen H, Squazzo SL, Iyengar S, Blahnik K, Rinn JL, Chang HY, et al. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet. 2007;3:e89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ecco G, Cassano M, Kauzlaric A, Duc J, Coluccio A, Offner S, et al. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev Cell. 2016;36:611–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herquel B, Ouararhni K, Martianov I, Le Gras S, Ye T, Keime C, et al. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol. 2013;20:339–46.

    Article  CAS  PubMed  Google Scholar 

  36. Ecco G, Imbeault M, Trono D. KRAB zinc finger proteins. Development. 2017;144:2719–29.

    Article  CAS  PubMed  Google Scholar 

  37. Herzog M, Wendling O, Guillou F, Chambon P, Mark M, Losson R, et al. TIF1β association with HP1 is essential for post-gastrulation development, but not for Sertoli cell functions during spermatogenesis. Dev Biol. 2011;350:548–58.

    Article  CAS  PubMed  Google Scholar 

  38. Huang C, Su T, Xue Y, Cheng C, Lay FD, McKee RA, et al. Cbx3 maintains lineage specificity during neural differentiation. Genes Dev. 2017;31:241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mattout A, Aaronson Y, Sailaja BS, Raghu Ram EV, Harikumar A, Mallm J-P et al. Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol. 2015;16. https://doi.org/10.1186/s13059-015-0760-8.

  40. Eissenberg JC, Morris GD, Reuter G, Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992;131:345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schott S, Coustham V, Simonet T, Bedet C, Palladino F. Unique and redundant functions of C. elegans HP1 proteins in post-embryonic development. Dev Biol. 2006;298:176–87.

    Article  CAS  PubMed  Google Scholar 

  42. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–53.

    Article  CAS  PubMed  Google Scholar 

  43. Kurinna S, Barton MC. Cascades of transcription regulation during liver regeneration. Int J Biochem Cell Biol. 2011;43:189–97.

    Article  CAS  PubMed  Google Scholar 

  44. Lee Y-H, Ann DK. Bi-phasic expression of heterochromatin protein 1 (HP1) during breast cancer progression: potential roles of HP1 and chromatin structure in tumorigenesis. J Nat Sci. 2015;1:e127.

    PubMed  PubMed Central  Google Scholar 

  45. Towbin BD, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell. 2012;150:934–47.

    Article  CAS  PubMed  Google Scholar 

  46. Poleshko A, Mansfield KM, Burlingame CC, Andrake MD, Shah NR, Katz RA. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep. 2013;5:292–301.

    Article  CAS  PubMed  Google Scholar 

  47. Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13:1192–1200.

    Article  CAS  PubMed  Google Scholar 

  48. Velazquez Camacho O, Galan C, Swist-Rosowska K, Ching R, Gamalinda M, Karabiber F, et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. Elife. 2017;6. https://doi.org/10.7554/eLife.25293.

  49. Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV. Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis. 2006;27:1180–6.

    Article  CAS  PubMed  Google Scholar 

  50. Brustel J, Kirstein N, Izard F, Grimaud C, Prorok P, Cayrou C, et al. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication. EMBO J. 2017;36:2726–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jørgensen S, Schotta G, Sørensen CS. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 2013;41:2797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Du Q, Bert SA, Armstrong NJ, Caldon CE, Song JZ, Nair SS, et al. Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nat Commun. 2019;10:416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee DH, Li Y, Shin D-H, Yi SA, Bang S-Y, Park EK, et al. DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun. 2013;434:820–8.

    Article  CAS  PubMed  Google Scholar 

  54. Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, et al. Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 2009;5:e1000670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell. 2005;19:381–91.

    Article  CAS  PubMed  Google Scholar 

  56. Stunnenberg R, Kulasegaran-Shylini R, Keller C, Kirschmann MA, Gelman L, Bühler M. H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an HP1 protein. EMBO J. 2015;34:2789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takaki A, Yamamoto K. Control of oxidative stress in hepatocellular carcinoma: helpful or harmful? World J Hepatol. 2015;7:968–79.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cizkova K, Konieczna A, Erdosova B, Lichnovska R, Ehrmann J. Peroxisome proliferator-activated receptors in regulation of cytochromes P450: new way to overcome multidrug resistance? J Biomed Biotechnol. 2012;2012. https://doi.org/10.1155/2012/656428.

  59. Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: therapeutic strategies. World J Hepatol. 2018;10:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bishayee A. The role of inflammation and liver cancer. Adv Exp Med Biol. 2014;816:401–35.

    Article  CAS  PubMed  Google Scholar 

  61. Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett. 2014;342:223–30.

    Article  CAS  PubMed  Google Scholar 

  62. Brégnard C, Guerra J, Déjardin S, Passalacqua F, Benkirane M, Laguette N. Upregulated LINE-1 activity in the fanconi anemia cancer susceptibility syndrome leads to spontaneous pro-inflammatory cytokine production. EBioMedicine. 2016;8:184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 2010;464:927–31.

    Article  CAS  PubMed  Google Scholar 

  64. Kato M, Takemoto K, Shinkai Y. A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing. Nat Commun. 2018;9:1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014;516:242–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wolf G, Yang P, Füchtbauer AC, Füchtbauer E-M, Silva AM, Park C, et al. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev. 2015;29:538–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cammas F, Mark M, Dollé P, Dierich A, Chambon P, Losson R. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development. 2000;127:2955–63.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Chambon, C. Sardet, T. Forné, D.Fisher, and C. Grimaud for helpful discussions and critical reading of the paper. We thank F. Bernex and L. LeCam, C. Keime, and B. Jost for fruitful discussions. We thank L. Papon, H. Fontaine, and C. Bonhomme for technical assistance and M. Oulad-Abdelghani and the IGBMC for the anti-HP1 and TRIM28 antibodies. We also thank the RHEM technical facility and particularly J. Simony for histological analysis and the IGBMC/ICS transgenic and animal facility for the initial establishment of the HP1 and TRIM28 mouse models. We thank C. Vincent and the IRCM animal core facility for the day to day care of the animal models. Finally, we thank S. Chamroeun for counting positive cells on TMA. We acknowledge the imaging facility MRI, member of the national infrastructure France-BioImaging and supported by the French National Research Agency (ANR-10-INBS-04, «Investments for the future»). This work was supported by funds from the Center National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Montpellier and the Institut regional de Cancérologie de Montpellier (ICM),) and SIRIC Montpellier Cancer, Grant INCa_Inserm_DGOS_12553. SH was funded by an Erasmus Ph.D. fellowship. We also thank the Ministry of Education, Science and Technology of the Republic of Kosovo for a scholarships to support SH. FC was supported by grants from ANR (ANR 2009 BLAN 021 91; ANR-16CE15-0018-03), INCa (PLBIO13-146), ARC (PJA20131200357), and La ligue Régionale contre le Cancer (128-R13021FF-RAB13006FFA). Sequencing was performed by the MGX facility. Montpellier, France.

Author information

Authors and Affiliations

Authors

Contributions

NS and SH performed the analysis of mice and interpreted the data. MP and CB made the libraries, generated, and analyzed the RNA-seq data. AZ and EF performed the RT-qPCR experiments. CG participated to mice analysis, NP supervised the histological core facility, and JYN performed the TMA. LK performed the pathological analysis of histological sections. DG was involved in the establishment of BMEL cells. YP and EJ were involved in cell transformation assays and chromatin analysis. FC designed, analyzed, and interpreted the data and wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Florence M. Cammas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saksouk, N., Hajdari, S., Perez, Y. et al. The mouse HP1 proteins are essential for preventing liver tumorigenesis. Oncogene 39, 2676–2691 (2020). https://doi.org/10.1038/s41388-020-1177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1177-8

This article is cited by

Search

Quick links