Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of the gut microbiome on nicotine’s motivational effects and glial cells in the ventral tegmental area in male mice

Abstract

A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine’s addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine’s rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antibiotic-induced or constitutive gut microbiota depletion enhances nicotine-induced activation of the mesolimbic system.
Fig. 2: Gut microbiota depletion enhances nicotine-evoked responses of dopaminergic neurons of the posterior ventral tegmental area.
Fig. 3: Gut microbiota depletion modifies nicotine’s motivational effects without altering nicotine withdrawal syndrome.
Fig. 4: Gut microbiota depletion increases astrocyte and post-synaptic protein, but not GLT1, density in the ventral tegmental area.
Fig. 5: Distinct microglial sub-populations are present in the anterior and posterior ventral tegmental area, and their distribution is re-organized in conditions of gut microbiota depletion.

Similar content being viewed by others

References

  1. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci. 2017;11:490.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. 2017;7:124–36.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Meckel KR, Kiraly DD. A potential role for the gut microbiome in substance use disorders. Psychopharmacology. 2019;236:1513–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, et al. Tobacco and nicotine use. Nat Rev Dis Prim. 2022;8:19.

    Article  PubMed  Google Scholar 

  6. Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: nicotine addiction. Sci Adv. 2019;5:eaay9763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev. 2010;34:295–342.

    Article  CAS  PubMed  Google Scholar 

  8. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56:27–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharm. 2007;7:69–76.

    Article  Google Scholar 

  10. Ikemoto S, Bonci A. Neurocircuitry of drug reward. Neuropharmacology .2014;76 Pt B:329–41.

    Article  PubMed  Google Scholar 

  11. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell .2016;165:1762–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron .2019;101:246–59.e6.

    Article  CAS  PubMed  Google Scholar 

  13. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, et al. Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep. 2016;6:35455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee K, Vuong HE, Nusbaum DJ, Hsiao EY, Evans CJ, Taylor AMW. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology .2018;43:2606–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Engel JA, Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs. 2014;28:875–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Linker KE, Cross SJ, Leslie FM. Glial mechanisms underlying substance use disorders. Eur J Neurosci. 2019;50:2574–89.

    Article  CAS  PubMed  Google Scholar 

  18. Anbalagan S. Endocrine cross-talk between the gut microbiome and glial cells in development and disease. J Neuroendocrinol. 2021;33:e12924.

    Article  CAS  PubMed  Google Scholar 

  19. Mossad O, Erny D. The microbiota-microglia axis in central nervous system disorders. Brain Pathol. 2020;30:1159–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell .2018;172:500–16.e16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology .2011;141:599–609. 09.e1-3

    Article  CAS  PubMed  Google Scholar 

  23. Husson M, Harrington L, Tochon L, Cho Y, Ibanez-Tallon I, Maskos U, et al. beta4-Nicotinic receptors are critically involved in reward-related behaviors and self-regulation of nicotine reinforcement. J Neurosci. 2020;40:3465–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature .2005;436:103–7.

    Article  CAS  PubMed  Google Scholar 

  25. Tolu S, Eddine R, Marti F, David V, Graupner M, Pons S, et al. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry. 2013;18:382–93.

    Article  CAS  PubMed  Google Scholar 

  26. Besson M, Granon S, Mameli-Engvall M, Cloez-Tayarani I, Maubourguet N, Cormier A, et al. Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc Natl Acad Sci USA. 2007;104:8155–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Saravia R, Flores A, Plaza-Zabala A, Busquets-Garcia A, Pastor A, de la Torre R, et al. CB1 cannabinoid receptors mediate cognitive deficits and structural plasticity changes during nicotine withdrawal. Biol Psychiatry. 2017;81:625–34.

    Article  CAS  PubMed  Google Scholar 

  28. Verdonk F, Roux P, Flamant P, Fiette L, Bozza FA, Simard S, et al. Phenotypic clustering: a novel method for microglial morphology analysis. J Neuroinflammation. 2016;13:153.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15:13.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int. 1998;33:287–97.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao-Shea R, Liu L, Soll LG, Improgo MR, Meyers EE, McIntosh JM, et al. Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area. Neuropsychopharmacology . 2011;36:1021–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Subramaniyan M, Dani JA. Dopaminergic and cholinergic learning mechanisms in nicotine addiction. Ann N.Y Acad Sci. 2015;1349:46–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ables JL, Gorlich A, Antolin-Fontes B, Wang C, Lipford SM, Riad MH, et al. Retrograde inhibition by a specific subset of interpeduncular alpha5 nicotinic neurons regulates nicotine preference. Proc Natl Acad Sci USA. 2017;114:13012–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Harrington L, Vinals X, Herrera-Solis A, Flores A, Morel C, Tolu S, et al. Role of beta4* nicotinic acetylcholine receptors in the habenulo-interpeduncular pathway in nicotine reinforcement in mice. Neuropsychopharmacology .2016;41:1790–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Morton G, Nasirova N, Sparks DW, Brodsky M, Sivakumaran S, Lambe EK, et al. Chrna5-expressing neurons in the interpeduncular nucleus mediate aversion primed by prior stimulation or nicotine exposure. J Neurosci. 2018;38:6900–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Forget B, Scholze P, Langa F, Morel C, Pons S, Mondoloni S, et al. A human polymorphism in chrna5 is linked to relapse to nicotine seeking in transgenic rats. Curr Biol. 2018;28:3244–53.e7.

    Article  CAS  PubMed  Google Scholar 

  37. Besson M, David V, Baudonnat M, Cazala P, Guilloux JP, Reperant C, et al. Alpha7-nicotinic receptors modulate nicotine-induced reinforcement and extracellular dopamine outflow in the mesolimbic system in mice. Psychopharmacology. 2012;220:1–14.

    Article  CAS  PubMed  Google Scholar 

  38. David V, Besson M, Changeux JP, Granon S, Cazala P. Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology. 2006;50:1030–40.

    Article  CAS  PubMed  Google Scholar 

  39. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell.2018;174:1406–23.e16.

    Article  CAS  PubMed  Google Scholar 

  40. Tirelle P, Breton J, Riou G, Dechelotte P, Coeffier M, Ribet D. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol. 2020;20:340.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Choi JG, Kim N, Ju IG, Eo H, Lim SM, Jang SE, et al. Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci Rep. 2018;8:1275.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Koutzoumis DN, Vergara M, Pino J, Buddendorff J, Khoshbouei H, Mandel RJ, et al. Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson’s disease. Exp Neurol. 2020;325:113159.

    Article  CAS  PubMed  Google Scholar 

  43. Damaj MI, Kao W, Martin BR. Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharm Exp Ther. 2003;307:526–34.

    Article  CAS  Google Scholar 

  44. Hughes JR. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res. 2007;9:315–27.

    Article  PubMed  Google Scholar 

  45. Stoker AK, Semenova S, Markou A. Affective and somatic aspects of spontaneous and precipitated nicotine withdrawal in C57BL/6J and BALB/cByJ mice. Neuropharmacology .2008;54:1223–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Besson M, David V, Suarez S, Cormier A, Cazala P, Changeux JP, et al. Genetic dissociation of two behaviors associated with nicotine addiction: beta-2 containing nicotinic receptors are involved in nicotine reinforcement but not in withdrawal syndrome. Psychopharmacology. 2006;187:189–99.

    Article  CAS  PubMed  Google Scholar 

  47. Xin W, Edwards N, Bonci A. VTA dopamine neuron plasticity - the unusual suspects. Eur J Neurosci. 2016;44:2975–83.

    Article  PubMed  Google Scholar 

  48. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend. 2017;180:156–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Williams SM, Sullivan RK, Scott HL, Finkelstein DI, Colditz PB, Lingwood BE, et al. Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia. 2005;49:520–41.

    Article  PubMed  Google Scholar 

  51. Roberts-Wolfe DJ, Kalivas PW. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol Disord Drug Targets. 2015;14:745–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wild AR, Bollands M, Morris PG, Jones S. Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons. Eur J Neurosci. 2015;42:2633–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hardaway JA, Sturgeon SM, Snarrenberg CL, Li Z, Xu XZ, Bermingham DP, et al. Glial expression of the caenorhabditis elegans gene swip-10 supports glutamate dependent control of extrasynaptic dopamine signaling. J Neurosci. 2015;35:9409–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gerrow K, El-Husseini A. Cell adhesion molecules at the synapse. Front Biosci. 2006;11:2400–19.

    Article  CAS  PubMed  Google Scholar 

  55. Stellwagen D, Kemp GM, Valade S, Chambon J. Glial regulation of synaptic function in models of addiction. Curr Opin Neurobiol. 2019;57:179–85.

    Article  CAS  PubMed  Google Scholar 

  56. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000;20:6309–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Garcia-Cabrerizo R, Carbia C, Riordan O, Schellekens K, Cryan H, Microbiota-gut-brain JF. Axis as a regulator of reward processes. J Neurochem. 2020;157:1495–524.

    Article  Google Scholar 

  58. Lin D, Hutchison KE, Portillo S, Vegara V, Ellingson JM, Liu J, et al. Association between the oral microbiome and brain resting state connectivity in smokers. Neuroimage .2019;200:121–31.

    Article  PubMed  Google Scholar 

  59. Sanchez-Catalan MJ, Kaufling J, Georges F, Veinante P, Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience .2014;282:198–216.

    Article  CAS  PubMed  Google Scholar 

  60. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, et al. Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science .2004;306:1029–32.

    Article  CAS  PubMed  Google Scholar 

  61. Jackson KJ, Walters CL, Miles MF, Martin BR, Damaj MI. Characterization of pharmacological and behavioral differences to nicotine in C57Bl/6 and DBA/2 mice. Neuropharmacology .2009;57:347–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Elayouby KS, Ishikawa M, Dukes AJ, Smith ACW, Lu Q, Fowler CD, et al. alpha3* Nicotinic acetylcholine receptors in the habenula-interpeduncular nucleus circuit regulate nicotine intake. J Neurosci. 2021;41:1779–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Clemens KJ, Caille S, Cador M. The effects of response operandum and prior food training on intravenous nicotine self-administration in rats. Psychopharmacology. 2010;211:43–54.

    Article  CAS  PubMed  Google Scholar 

  64. Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci. 2008;28:12318–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kennedy EA, King KY, Baldridge MT. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol. 2018;9:1534.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, et al. Neurobiological mechanisms of nicotine reward and aversion. Pharm Rev. 2022;74:271–310.

    Article  CAS  PubMed  Google Scholar 

  67. Liu C, Tose AJ, Verharen JPH, Zhu Y, Tang LW, de Jong JW, et al. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron. 2022. https://doi.org/10.1016/j.neuron.2022.07.003.

  68. Grieder TE, Besson M, Maal-Bared G, Pons S, Maskos U, van der Kooy D. beta2* nAChRs on VTA dopamine and GABA neurons separately mediate nicotine aversion and reward. Proc Natl Acad Sci USA. 2019;116:25968–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sartor CE, Lessov-Schlaggar CN, Scherrer JF, Bucholz KK, Madden PA, Pergadia ML, et al. Initial response to cigarettes predicts rate of progression to regular smoking: findings from an offspring-of-twins design. Addict Behav. 2010;35:771–8.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells–possible relevance to autism spectrum disorders. PLoS One. 2014;9:e103740.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Shah P, Nankova BB, Parab S, La Gamma EF. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res. 2006;1107:13–23.

    Article  CAS  PubMed  Google Scholar 

  72. El-Ansary AK, Ben Bacha A, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation. 2012;9:74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A neural circuit for gut-induced reward. Cell. 2018;175:887–88.

    Article  CAS  PubMed  Google Scholar 

  74. Fouyssac M, Belin D. Beyond drug-induced alteration of glutamate homeostasis, astrocytes may contribute to dopamine-dependent intrastriatal functional shifts that underlie the development of drug addiction: A working hypothesis. Eur J Neurosci. 2019;50:3014–27.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Alajaji M, Bowers MS, Knackstedt L, Damaj MI. Effects of the beta-lactam antibiotic ceftriaxone on nicotine withdrawal and nicotine-induced reinstatement of preference in mice. Psychopharmacology. 2013;228:419–26.

    Article  CAS  PubMed  Google Scholar 

  76. Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem. 2000;75:1076–84.

    Article  CAS  PubMed  Google Scholar 

  77. Shen HW, Scofield MD, Boger H, Hensley M, Kalivas PW. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci. 2014;34:5649–57.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Gonzalez-Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F. Splice variants of the glutamate transporter GLT1 form hetero-oligomers that interact with PSD-95 and NMDA receptors. J Neurochem. 2009;110:264–74.

    Article  CAS  PubMed  Google Scholar 

  79. Morales M, Root DH. Glutamate neurons within the midbrain dopamine regions. Neuroscience 2014;282:60–8.

    Article  CAS  PubMed  Google Scholar 

  80. Treadway MT, Cooper JA, Miller AH. Can’t or Won’t? Immunometabolic constraints on dopaminergic drive. Trends Cogn Sci. 2019;23:435–48.

    Article  PubMed Central  PubMed  Google Scholar 

  81. De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron .2017;95:341–56.e6.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol. 2009;40:139–56.

    Article  CAS  PubMed  Google Scholar 

  83. Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, et al. Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation. 2014;11:12.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Kongsui R, Johnson SJ, Graham BA, Nilsson M, Walker FR. A combined cumulative threshold spectra and digital reconstruction analysis reveal structural alterations of microglia within the prefrontal cortex following low-dose LPS administration. Neuroscience .2015;310:629–40.

    Article  CAS  PubMed  Google Scholar 

  85. Del Toro-Barbosa M, Hurtado-Romero A, Garcia-Amezquita LE, Garcia-Cayuela T. Psychobiotics: mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients .2020;12:12.

    Google Scholar 

  86. Beardsley PM, Hauser KF. Glial modulators as potential treatments of psychostimulant abuse. Adv Pharm. 2014;69:1–69.

    Article  CAS  Google Scholar 

  87. Verplaetse TL, Morris ED, McKee SA, Cosgrove KP. Sex differences in the nicotinic acetylcholine and dopamine receptor systems underlying tobacco smoking addiction. Curr Opin Behav Sci. 2018;23:196–202.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Chi L, Mahbub R, Gao B, Bian X, Tu P, Ru H, et al. Nicotine alters the gut microbiome and metabolites of gut-brain interactions in a sex-specific manner. Chem Res Toxicol. 2017;30:2110–19.

    Article  CAS  PubMed  Google Scholar 

  89. Pizarro N, Kossatz E, Gonzalez P, Gamero A, Veza E, Fernandez C, et al. Sex-specific effects of synbiotic exposure in mice on addictive-like behavioral alterations induced by chronic alcohol intake are associated with changes in specific gut bacterial taxa and brain tryptophan metabolism. Front Nutr. 2021;8:750333.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Ren M, Lotfipour S. Dose- and sex-dependent bidirectional relationship between intravenous fentanyl self-administration and gut microbiota. Microorganisms. 2022;10:1127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biomics and gnotobiology plateforms and animal facilities (Institut Pasteur, Paris).

Funding

This work was supported by the Institut Pasteur, Paris (GPF Microbes and Brain, project “µBIOTADDICT”). UtechS PBI/C2RT is part of the France BioImaging infrastructure supported by the French National Research Agency (ANR-10-INSB-04-01, “Investments for the future”) and is supported by Conseil de la Region Ile-de-France (Domaine d’Intérêt Majeur DIM1HEALTH) and by Fondation Française pour la Recherche Médicale (Programme Grands Equipements).

Author information

Authors and Affiliations

Authors

Contributions

MB, AD, VD, BF, FM, UM designed research; MB, CC, VD, AL, FM, AR, LR, ST, LT, and FT performed research; FDC contributed new analytic tools; MB, CC, AD, VD, AL, FM, AR, LR, ST, LT, and FT analyzed data; MB wrote the original draft of the paper. All co-authors read, reviewed, edited and approved the final manuscript.

Corresponding author

Correspondence to Morgane Besson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakosa, A., Rahimian, A., Tomasi, F. et al. Impact of the gut microbiome on nicotine’s motivational effects and glial cells in the ventral tegmental area in male mice. Neuropsychopharmacol. 48, 963–974 (2023). https://doi.org/10.1038/s41386-023-01563-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01563-x

This article is cited by

Search

Quick links