Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glial-restricted precursors stimulate endogenous cytogenesis and effectively recover emotional deficits in a model of cytogenesis ablation

Abstract

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like deficits and demonstrated an antidepressant-like effect, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescuing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of GRPs at P5, both in vitro and in vivo (post transplantation).
Fig. 2: GFAP-tk rat model characterization and experimental timeline.
Fig. 3: Effects of GRP and secretome treatments on behavior and generation of new cells in GFAP-tk rats.
Fig. 4: Analysis of the proteins significantly altered between GRPs or Secretome treatments and GFAP-tk sham animals.
Fig. 5: Analysis of the proteins altered between groups in the dDG region.
Fig. 6: Analysis of the proteins altered between groups in the vDG region.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Data files).

References

  1. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    Article  CAS  PubMed  Google Scholar 

  2. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res. 2020;381:112458.

    Article  PubMed  Google Scholar 

  4. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018;23:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22:589–599.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry. 2019;24:67–87.

    Article  CAS  PubMed  Google Scholar 

  7. Murano T, Nakajima R, Nakao A, Hirata N, Amemori S, Murakami A, et al. Multiple types of navigational information are independently encoded in the population activities of the dentate gyrus neurons. Proc Natl Acad Sci. 2022;119:e2106830119.

  8. Abrous DN, Koehl M, Lemoine M. A Baldwin interpretation of adult hippocampal neurogenesis: from functional relevance to physiopathology. Mol Psychiatry. 2022;27:383–402.

    Article  PubMed  Google Scholar 

  9. Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry. 2022;27:403–21.

    Article  CAS  PubMed  Google Scholar 

  10. Malhi GS, Mann JJ. Depression. Lancet. 2018;392:2299–312.

    Article  PubMed  Google Scholar 

  11. Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry. 2022;27:2689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alves ND, Correia JS, Patrício P, Mateus-Pinheiro A, Machado-Santos AR, Loureiro-Campos E, et al. Adult hippocampal neuroplasticity triggers susceptibility to recurrent depression. Transl Psychiatry. 2017;7:e1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry. 2020;25:530–43.

    Article  PubMed  Google Scholar 

  14. Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev. 2021;131:411–28.

    Article  PubMed  Google Scholar 

  15. Mateus-Pinheiro A, Pinto L, Bessa JM, Morais M, Alves ND, Monteiro S, et al. Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Transl Psychiatry. 2013;3:e210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat Hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banasr M, Soumier A, Hery M, Mocaër E, Daszuta A. Agomelatine, a new antidepressant, induces regional changes in Hippocampal neurogenesis. Biol Psychiatry. 2006;59:1087–96.

    Article  CAS  PubMed  Google Scholar 

  18. Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry. 2011;16:738–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 2011;16:1177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    Article  CAS  PubMed  Google Scholar 

  21. Gałecki P, Samochowiec J, Mikułowska M, Szulc A. Treatment-resistant depression in Poland—epidemiology and treatment. J Clin Med. 2022;11:480.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fugger G, Bartova L, Fabbri C, Fanelli G, Dold M, Swoboda MMM, et al. The sociodemographic and clinical profile of patients with major depressive disorder receiving SSRIs as first-line antidepressant treatment in European countries. Eur Arch Psychiatry Clin Neurosci. 2022;272:715–27.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bessa JM, Carvalho S, Cunha IB, Fernandes M, Matos-Pires A, Neves R, et al. Treatment-resistant depression in portugal: perspective from psychiatry experts. Front Psychiatry. 2022;13:824919.

  24. Moret C, Isaac M, Briley M. Review: Problems associated with long-term treatment with selective serotonin reuptake inhibitors. J Psychopharmacol. 2009;23:967–74.

    Article  CAS  PubMed  Google Scholar 

  25. Learned S, Graff O, Roychowdhury S, Moate R, Krishnan KR, Archer G, et al. Efficacy, safety, and tolerability of a triple reuptake inhibitor GSK372475 in the treatment of patients with major depressive disorder: two randomized, placebo- and active-controlled clinical trials. J Psychopharmacol. 2012;26:653–62.

    Article  PubMed  Google Scholar 

  26. Nierenberg AA, Greist JH, Mallinckrodt CH, Prakash A, Sambunaris A, Tollefson GD, et al. Duloxetine versus escitalopram and placebo in the treatment of patients with major depressive disorder: onset of antidepressant action, a non-inferiority study. Curr Med Res Opin. 2007;23:401–16.

    Article  CAS  PubMed  Google Scholar 

  27. Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58:545.

    Article  CAS  PubMed  Google Scholar 

  28. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depressionSee accompanying Editorial, in this issue. Biol Psychiatry. 1999;45:1085–98.

    Article  CAS  PubMed  Google Scholar 

  29. Czéh B, Fuchs E, Flügge G. Altered glial plasticity in animal models for mood disorders. Curr Drug Targets. 2013;14:1249–61.

    Article  PubMed  Google Scholar 

  30. Czéh B, di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol. 2013;23:171–85.

    Article  PubMed  Google Scholar 

  31. Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry. 2004;56:570–80.

    Article  CAS  PubMed  Google Scholar 

  32. Czéh B, Müller-Keuker JIH, Rygula R, Abumaria N, Hiemke C, Domenici E, et al. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology. 2007;32:1490–503.

    Article  PubMed  Google Scholar 

  33. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002;417:39–44.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Horner PJ, Palmer TD. New roles for astrocytes: The nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci. 2003;26:597–603.

    Article  CAS  PubMed  Google Scholar 

  35. Machado-Santos AR, Alves ND, Araújo B, Correia JS, Patrício P, Mateus-Pinheiro A, et al. Astrocytic plasticity at the dorsal dentate gyrus on an animal model of recurrent depression. Neuroscience. 2021;454:94–104.

    Article  CAS  PubMed  Google Scholar 

  36. Machado-Santos AR, Loureiro-Campos E, Patrício P, Araújo B, Alves ND, Mateus-Pinheiro A, et al. Beyond new neurons in the adult hippocampus: imipramine acts as a pro-astrogliogenic factor and rescues cognitive impairments induced by stress exposure. Cells. 2022;11:390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mateus-Pinheiro A, Patrício P, Alves ND, Martins-Macedo J, Caetano I, Silveira-Rosa T, et al. Hippocampal cytogenesis abrogation impairs inter-regional communication between the hippocampus and prefrontal cortex and promotes the time-dependent manifestation of emotional and cognitive deficits. Mol Psychiatry. 2021;26:7154–66.

    Article  PubMed  Google Scholar 

  38. Groves JO, Leslie I, Huang GJ, McHugh SB, Taylor A, Mott R, et al. Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLoS Genet. 2013;9:e1003718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martins‐Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia. 2021;69:513–31.

    Article  PubMed  Google Scholar 

  40. Rao MS, Mayer-Proschel M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol. 1997;188:48–63.

    Article  CAS  PubMed  Google Scholar 

  41. Mi H, Barres BA. Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J Neurosci. 1999;19:1049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lepore AC, Fischer I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol. 2005;194:230–42.

    Article  CAS  PubMed  Google Scholar 

  43. Jordan WH. Book review: the rat brain in stereotaxic coordinates. Vet Pathol. 2006;43:86–7.

    Article  Google Scholar 

  44. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  46. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.

    Article  CAS  PubMed  Google Scholar 

  48. Chen T, Liu Y, Huang L. ImageGP: An easy‐to‐use data visualization web server for scientific researchers. iMeta. 2022;1:e5.

  49. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.

    Article  PubMed  Google Scholar 

  50. Hattiangady B, Shuai B, Cai J, Coksaygan T, Rao MS, Shetty AK. Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging Hippocampus. Stem Cells. 2007;25:2104–17.

    Article  PubMed  Google Scholar 

  51. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koyanagi I, Akers K, Vergara P, Srinivasan S, Sakurai T, Sakaguchi M. Memory consolidation during sleep and adult hippocampal neurogenesis. Neural Regen Res. 2019;14:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5.

    Article  PubMed  Google Scholar 

  54. Holt W, Maren S. Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci. 1999;19:9054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moser MB, Moser EI, Forrest E, Andersen P, Morris RG. Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci. 1995;92:9697–701.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry. 2009;14:959–67.

    Article  PubMed  Google Scholar 

  57. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci. 2002;99:10825–30.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weeden CSS, Roberts JM, Kamm AM, Kesner RP. The role of the ventral dentate gyrus in anxiety-based behaviors. Neurobiol Learn Mem. 2015;118:143–9.

    Article  PubMed  Google Scholar 

  59. Houser CR, Peng Z, Wei X, Huang CS, Mody I. Mossy cells in the dorsal and ventral dentate gyrus differ in their patterns of axonal projections. J Neurosci. 2021;41:991–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fredes F, Silva MA, Koppensteiner P, Kobayashi K, Joesch M, Shigemoto R. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Curr Biol. 2021;31:25–38.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience. 1989;31:571–91.

    Article  CAS  PubMed  Google Scholar 

  62. Ishizuka N, Weber J, Amaral DG. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol. 1990;295:580–623.

    Article  CAS  PubMed  Google Scholar 

  63. Swanson LW, Wyss JM, Cowan WM. An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol. 1978;181:681–715.

    Article  CAS  PubMed  Google Scholar 

  64. Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, et al. Critical roles of embryonic born dorsal dentate granule neurons for activity-dependent increases in BDNF, adult hippocampal neurogenesis, and antianxiety-like behaviors. Biol Psychiatry. 2021;89:600–14.

    Article  CAS  PubMed  Google Scholar 

  65. Botterill JJ, Gerencer KJ, Vinod KY, Alcantara‐Gonzalez D, Scharfman HE. Dorsal and ventral mossy cells differ in their axonal projections throughout the dentate gyrus of the mouse hippocampus. Hippocampus. 2021;31:522–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeong M, Jang J-H, Oh S-J, Choe Y-S, Park J, Lee J, et al. Intrinsic heterogeneity of mossy cells mediates the differential crosstalk between the dorsal and ventral hippocampus. Preprint (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-92512/v1. 2020.

  67. Botterill JJ, Vinod KY, Gerencer KJ, Teixeira CM, LaFrancois JJ, Scharfman HE. Bidirectional regulation of cognitive and anxiety-like behaviors by dentate gyrus mossy cells in male and female mice. J Neurosci. 2021;41:2475–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chih B, Engelman H, Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science (1979). 2005;307:1324–8.

    CAS  Google Scholar 

  69. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell. 2004;119:1013–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blundell J, Tabuchi K, Bolliger MF, Blaiss CA, Brose N, Liu X, et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav. 2009;8:114–26.

    Article  CAS  PubMed  Google Scholar 

  71. Babaev O, Botta P, Meyer E, Müller C, Ehrenreich H, Brose N, et al. Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala. Neuropharmacology. 2016;100:56–65.

    Article  CAS  PubMed  Google Scholar 

  72. Williamson MA. Aryl hydrocarbon receptor expression and activity in cerebellar granule neuroblasts: implications for development and dioxin neurotoxicity. Toxicol Sci. 2004;83:340–8.

    Article  PubMed  Google Scholar 

  73. Latchney SE, Hein AM, O’Banion MK, DiCicco-Bloom E, Opanashuk LA. Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem. 2013;125:430–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. de la Parra J, Cuartero MI, Pérez-Ruiz A, García-Culebras A, Martín R, Sánchez-Prieto J, et al. AhR deletion promotes aberrant morphogenesis and synaptic activity of adult-generated granule neurons and impairs hippocampus-dependent memory. eNeuro. 2018;5:ENEURO.0370-17.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kleindienst A, McGinn MJ, Harvey HB, Colello RJ, Hamm RJ, Bullock MR. Enhanced hippocampal neurogenesis by intraventricular s100b infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotrauma. 2005;22:645–55.

    Article  PubMed  Google Scholar 

  76. Hashikawa N, Utaka Y, Ogawa T, Tanoue R, Morita Y, Yamamoto S, et al. HSP105 prevents depression-like behavior by increasing hippocampal brain-derived neurotrophic factor levels in mice. Sci Adv. 2017;3:e1603014.

  77. Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci. 1992;103:589–97.

    Article  CAS  PubMed  Google Scholar 

  78. Sharifi K, Morihiro Y, Maekawa M, Yasumoto Y, Hoshi H, Adachi Y, et al. FABP7 expression in normal and stab-injured brain cortex and its role in astrocyte proliferation. Histochem Cell Biol. 2011;136:501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frischknecht R, Seidenbecher CI. Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. Int J Biochem Cell Biol. 2012;44:1051–4.

    Article  CAS  PubMed  Google Scholar 

  80. Mani S, Shen Y, Schaefer J, Meiri KF. Failure to express GAP-43 during neurogenesis affects cell cycle regulation and differentiation of neural precursors and stimulates apoptosis of neurons. Mol Cell Neurosci. 2001;17:54–66.

    Article  CAS  PubMed  Google Scholar 

  81. Geissler M, Gottschling C, Aguado A, Rauch U, Wetzel CH, Hatt H, et al. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J Neurosci. 2013;33:7742–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem [Internet]. 2007;0:070214184024009-??? Available from: https://doi.org/10.1111/j.1471-4159.2006.04319.x.

  84. Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B, et al. Tau protein is essential for stress-induced brain pathology. Proc Natl Acad Sci. 2016;113:E3755-E3763.

  85. Wen G, Yao H, Li Y, Ding R, Ren X, Tan Y, et al. Regulation of tau protein on the antidepressant effects of ketamine in the chronic unpredictable mild stress model. Front Psychiatry. 2019;10:287.

  86. Joy T, Rao M, Madhyastha S. N-acetyl cysteine supplement minimize tau expression and neuronal loss in animal model of Alzheimer’s disease. Brain Sci. 2018;8:185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Janke KL, Cominski TP, Kuzhikandathil EV, Servatius RJ, Pang KCH. Investigating the role of hippocampal bdnf in anxiety vulnerability using classical eyeblink conditioning. Front Psychiatry. 2015;6:106.

  88. JiaWen W, Hong S, ShengXiang X, Jing L. Depression- and anxiety-like behaviour is related to BDNF/TrkB signalling in a mouse model of psoriasis. Clin Exp Dermatol. 2018;43:254–61.

    Article  CAS  PubMed  Google Scholar 

  89. Prowse N, Dwyer Z, Thompson A, Fortin T, Elson K, Robeson H, et al. Early life selective knockdown of the TrkB receptor and maternal separation modulates adult stress phenotype. Behav Brain Res. 2020;378:112260.

    Article  CAS  PubMed  Google Scholar 

  90. Niknazar S, Nahavandi A, Peyvandi AA, Peyvandi H, Akhtari AS, Karimi M. Comparison of the adulthood chronic stress effect on hippocampal BDNF signaling in male and female rats. Mol Neurobiol. 2016;53:4026–33.

    Article  CAS  PubMed  Google Scholar 

  91. Marosi K, Kim SW, Moehl K, Scheibye‐Knudsen M, Cheng A, Cutler R, et al. 3‐Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem. 2016;139:769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Itzhak Fisher for providing the transgenic rats to isolate GRPs and Prof. Jonathan Flint for providing the GFAP-tk rat line. L.P. was funded by the Portuguese Foundation for Science and Technology (FCT, 2020.02855.CEECIND, CEECINST/00077/2018/CP1640/CT0003 and https://doi.org/10.54499/2022.02201.PTDC). This work was funded by Nature Research Award for Driving Global Impact – 2019 Brain Sciences (to L.P.). A.J.S. received funding from Prémios Santa Casa Neurociências – Prize Melo e Castro for Spinal Cord Injury Research (MC-04/17; MC-18-2021), and from FCT (POCI-01-0145-FEDER-029206). A.J.R. was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101003187), by “La Caixa” Foundation (ID 100010434), under the agreement LCF/PR/HR20/52400020, as well as by FCT, under the scope of the project https://doi.org/10.54499/PTDC/MED-NEU/4804/2020 (ENDOPIO). This work has been also funded by National funds, through the FCT – project UIDB/50026/2020 and UIDP/50026/2020. A.C.L. was supported by the National Institute of Neurological Disorders and Stroke (R01NS079702, R01NS110385) and the Yant Family Spinal Cord Regeneration Fund. S.I.A. was funded by FCT (2021.04378.CEECIND and EXPL/BTM-TEC/1407/2021). B.M. was funded by The National Mass Spectrometry Network (POCI-01-0145-FEDER-402-022125 Ref.ROTEIRO/0028/2013) and FCT (UIDB/04539/2020 and UIDP/04539/2020).

Author information

Authors and Affiliations

Authors

Contributions

JMM, BA, TSR and PP maintained the GFAP-tk colony, induced the model, performed genotyping and collected wellbeing measures. ACL isolated and provided the GRPs. JMM and EDG conducted all behavioral tests, in vitro experiments and immunohistochemical experiments, performed the analyses and interpreted the results. BA assisted in the immunohistochemical experiments and analyses. SIA performed the proteome experiments. SIA, FGT, JMS, NDA and BM analyzed and interpreted the proteome data. JMM, EDG, AJS and LP designed the study, planned the experiments and wrote the manuscript. JMM, EDG, AJS, AJR, BA, ACL and LP edited the manuscript.

Corresponding author

Correspondence to Luísa Pinto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins-Macedo, J., Araújo, B., Anjo, S.I. et al. Glial-restricted precursors stimulate endogenous cytogenesis and effectively recover emotional deficits in a model of cytogenesis ablation. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02490-z

Search

Quick links