Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial correspondence among regional gene expressions and gray matter volume loss in multiple sclerosis

Abstract

In multiple sclerosis (MS), a non-random and clinically relevant pattern of gray matter (GM) volume loss has been described. Whether differences in regional gene expression might underlay distinctive pathological processes contributing to this regional variability has not been explored yet. Two hundred eighty-six MS patients and 172 healthy controls (HC) underwent a brain 3T MRI, a complete neurological evaluation and a neuropsychological assessment. Using Allen Human Brain Atlas, voxel-based morphometry and MENGA platform, we integrated brain transcriptome and neuroimaging data to explore the spatial cross-correlations between regional GM volume loss and expressions of 2710 genes involved in MS (p < 0.05, family-wise error-corrected). Enrichment analyses were performed to evaluate overrepresented molecular functions, biological processes and cellular components involving genes significantly associated with voxel-based morphometry-derived GM maps (p < 0.05, Bonferroni-corrected). A diffuse GM volume loss was found in MS patients compared to HC and it was spatially correlated with 74 genes involved in GABA neurotransmission and mitochondrial oxidoreductase activity mainly expressed in neurons and astrocytes. A more severe GM volume loss was spatially associated, in more disabled MS patients, with 44 genes involved in mitochondrial integrity of all resident cells of the central nervous system (CNS) and, in cognitively impaired MS patients, with 64 genes involved in mitochondrial protein heterodimerization and oxidoreductase activities expressed also in microglia and endothelial cells. Specific differences in the expressions of genes involved in synaptic GABA receptor activities and mitochondrial functions in resident CNS cells may influence regional susceptibility to MS-related excitatory/inhibitory imbalance and oxidative stress, and subsequently, to GM volume loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Between-group differences in regional gray matter volume loss in multiple sclerosis patients vs. healthy controls and results of enrichment analyses using ToppGene Suite.
Fig. 2: Specific gene expression according to brain cell type.
Fig. 3: Negative correlations between regional gray matter volume and EDSS score, between-group differences in regional GM volume loss in progressive vs relapsing-remitting MS patients, results of enrichment analyses using ToppGene Suite and specific gene expression according to brain cell type.
Fig. 4: Between-group differences in regional gray matter volume loss in multiple sclerosis patients with vs without cognitive impairment, results of enrichment analyses using ToppGene Suite and specific gene expression according to brain cell type.

Similar content being viewed by others

Data availability

The anonymized dataset used and analyzed during the current study is available from the corresponding author upon reasonable request.

References

  1. Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. 2014;10:225–38.

    Article  CAS  PubMed  Google Scholar 

  2. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–93.

    Article  CAS  PubMed  Google Scholar 

  3. Eijlers AJC, van Geest Q, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, et al. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018;141:2605–18.

    PubMed  Google Scholar 

  4. Eshaghi A, Marinescu RV, Young AL, Firth NC, Prados F, Jorge Cardoso M, et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain. 2018;141:1665–77.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rocca MA, Valsasina P, Meani A, Gobbi C, Zecca C, Rovira A, et al. Association of gray matter atrophy patterns with clinical phenotype and progression in multiple sclerosis. Neurology. 2021;96:e1561–e73.

    Article  CAS  PubMed  Google Scholar 

  6. Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ, et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain. 2016;139:115–26.

    Article  PubMed  Google Scholar 

  7. International Multiple Sclerosis Genetics C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365.

  8. Zivadinov R, Uxa L, Bratina A, Bosco A, Srinivasaraghavan B, Minagar A, et al. HLA-DRB1*1501, -DQB1*0301, -DQB1*0302, -DQB1*0602, and -DQB1*0603 alleles are associated with more severe disease outcome on MRI in patients with multiple sclerosis. Int Rev Neurobiol. 2007;79:521–35.

    Article  CAS  PubMed  Google Scholar 

  9. Isobe N, Keshavan A, Gourraud PA, Zhu AH, Datta E, Schlaeger R, et al. Association of HLA genetic risk burden with disease phenotypes in multiple sclerosis. JAMA Neurol. 2016;73:795–802.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brownlee WJ, Tur C, Manole A, Eshaghi A, Prados F, Miszkiel KA, et al. HLA-DRB1*1501 influences long-term disability progression and tissue damage on MRI in relapse-onset multiple sclerosis. Mult Scler. 2023;29:333–42.

    Article  CAS  PubMed  Google Scholar 

  11. Van der Walt A, Stankovich J, Bahlo M, Taylor BV, Van der Mei IA, Foote SJ, et al. Heterogeneity at the HLA-DRB1 allelic variation locus does not influence multiple sclerosis disease severity, brain atrophy or cognition. Mult Scler. 2011;17:344–52.

    Article  PubMed  Google Scholar 

  12. Yaldizli O, Sethi V, Pardini M, Tur C, Mok KY, Muhlert N, et al. HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Mult Scler Relat Disord. 2016;7:47–52.

    Article  PubMed  Google Scholar 

  13. Santoro S, Clarelli F, Preziosa P, Storelli L, Cannizzaro M, Mascia E, et al. Exploring the association of HLA genetic risk burden on thalamic and hippocampal atrophy in multiple sclerosis patients. Genes. 2022;13:2136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strijbis EM, Inkster B, Vounou M, Naegelin Y, Kappos L, Radue EW, et al. Glutamate gene polymorphisms predict brain volumes in multiple sclerosis. Mult Scler. 2013;19:281–8.

    Article  CAS  PubMed  Google Scholar 

  15. Matsushita T, Madireddy L, Sprenger T, Khankhanian P, Magon S, Naegelin Y, et al. Genetic associations with brain cortical thickness in multiple sclerosis. Genes Brain Behav. 2015;14:217–27.

    Article  CAS  PubMed  Google Scholar 

  16. Baranzini SE, Srinivasan R, Khankhanian P, Okuda DT, Nelson SJ, Matthews PM, et al. Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. Brain. 2010;133:2603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clarelli F, Assunta Rocca M, Santoro S, De Meo E, Ferre L, et al. Assessment of the genetic contribution to brain magnetic resonance imaging lesion load and atrophy measures in multiple sclerosis patients. Eur J Neurol. 2021;28:2513–22.

    Article  PubMed  Google Scholar 

  18. Diez I, Sepulcre J. Unveiling the neuroimaging-genetic intersections in the human brain. Curr Opin Neurol. 2021;34:480–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun J, Xie Y, Wang Q, Shen J, Qin W, Zhang N, et al. Genes associated with grey matter volume reduction in multiple sclerosis. J Neurol. 2022;269:2004–15.

    Article  CAS  PubMed  Google Scholar 

  21. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.

    Article  PubMed  Google Scholar 

  22. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83:278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rao SM, and the Cognitive Function Study Group of the National Multiple Sclerosis Society. A manual for the brief repeatable battery of neuropsychological test in multiple sclerosis. Milwaukee, WI: Medical College of Wisconsin; 1990.

  24. Amato MP, Portaccio E, Goretti B, Zipoli V, Ricchiuti L, De Caro MF, et al. The Rao’s Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler. 2006;12:787–93.

    Article  CAS  PubMed  Google Scholar 

  25. Ruano L, Portaccio E, Goretti B, Niccolai C, Severo M, Patti F, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017;23:1258–67.

    Article  PubMed  Google Scholar 

  26. Battaglini M, Jenkinson M, De Stefano N. Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp. 2012;33:2062–71.

    Article  PubMed  Google Scholar 

  27. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17:479–89.

    Article  PubMed  Google Scholar 

  28. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  29. Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A. MENGA: A new comprehensive tool for the integration of neuroimaging data and the Allen Human Brain Transcriptome Atlas. PLoS One. 2016;11:e0148744.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Arnatkeviciute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage. 2019;189:353–67.

    Article  PubMed  Google Scholar 

  31. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–11. (Web Server issue)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKenzie AT, Wang M, Hauberg ME, Fullard JF, Kozlenkov A, Keenan A, et al. Brain cell type specific gene expression and co-expression network architectures. Sci Rep. 2018;8:8868.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112:7285–90.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao Y, Wong L, Goh WWB. How to do quantile normalization correctly for gene expression data analyses. Sci Rep. 2020;10:15534.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huiskamp M, Kiljan S, Kulik S, Witte ME, Jonkman LE, Gjm Bol J, et al. Inhibitory synaptic loss drives network changes in multiple sclerosis: An ex vivo to in silico translational study. Mult Scler. 2022;28:2010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zoupi L, Booker SA, Eigel D, Werner C, Kind PC, Spires-Jones TL, et al. Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathol. 2021;141:415–29.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu J, Feng X, Wang Y, Xia X, Zheng JC. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front Cell Neurosci. 2022;16:892497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdelhak A, Foschi M, Abu-Rumeileh S, Yue JK, D’Anna L, Huss A, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol. 2022;18:158–72.

    Article  CAS  PubMed  Google Scholar 

  39. Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, et al. Mitochondrial changes within axons in multiple sclerosis. Brain. 2009;132:1161–74.

    Article  PubMed  Google Scholar 

  40. Turturici G, Tinnirello R, Sconzo G, Asea A, Savettieri G, Ragonese P, et al. Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: an overview. J Neuropathol Exp Neurol. 2014;73:1092–106.

    Article  CAS  PubMed  Google Scholar 

  41. Ferre CA, Thouard A, Betourne A, Le Dorze AL, Belenguer P, Miquel MC, et al. HSPA9/Mortalin mediates axo-protection and modulates mitochondrial dynamics in neurons. Sci Rep. 2021;11:17705.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang SY, He XY, Isaacs C, Dobkin C, Miller D, Philipp M. Roles of 17beta-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol. 2014;143:460–72.

    Article  CAS  PubMed  Google Scholar 

  43. Vollmer TL, Nair KV, Williams IM, Alvarez E. Multiple Sclerosis phenotypes as a continuum: the role of neurologic reserve. Neurol Clin Pr. 2021;11:342–51.

    Article  Google Scholar 

  44. Balasa R, Barcutean L, Mosora O, Manu D. Reviewing the significance of blood-brain barrier disruption in multiple sclerosis pathology and treatment. Int J Mol Sci. 2021;22:8370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minagar A, Maghzi AH, McGee JC, Alexander JS. Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. Neurol Res. 2012;34:738–45.

    Article  PubMed  Google Scholar 

  46. Sun Z, Zhao H, Fang D, Davis CT, Shi DS, Lei K, et al. Neuroinflammatory disease disrupts the blood-CNS barrier via crosstalk between proinflammatory and endothelial-to-mesenchymal-transition signaling. Neuron. 2022;110:3106–20.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guerrero BL, Sicotte NL. Microglia in multiple sclerosis: friend or foe? Front Immunol. 2020;11:374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhaskaran S, Kumar G, Thadathil N, Piekarz KM, Mohammed S, Lopez SD, et al. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol. 2023;59:102550.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study described in the present manuscript received no funding.

Author information

Authors and Affiliations

Authors

Contributions

P. Preziosa contributed to the conception of the study, acquisition, analysis and interpretation of clinical and MRI data, drafting and revising the text and preparing the figures. L.Storelli contributed to the acquisition, analysis and interpretation of MRI data and revising the manuscript. N. Tedone, M. Margoni, D. Mistri, M. Azzimonti contributed to the acquisition, analysis and interpretation of MRI data and revising the manuscript. M.A. Rocca and M. Filippi contributed to the conception of the study, drafting and revising the text, acting as the study supervisors. All the authors gave their approval to the current version of the manuscript.

Corresponding author

Correspondence to Maria A. Rocca.

Ethics declarations

Competing interests

The authors declare that they have no competing interests in relation to this work. Potential conflicts of interest outside the submitted work are as follows: P. Preziosa received speaker honoraria from Roche, Biogen, Novartis, Merck Serono, Bristol Myers Squibb and Genzyme. He has received research support from Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla. L. Storelli declared the receipt of grants and contracts from FISM-Fondazione Italiana Sclerosi Multipla-within a fellowship program (cod. 2019/BR/009). N. Tedone, D. Mistri and M. Azzimonti report no competing interests. M. Margoni reports grants and personal fees from Sanofi Genzyme, Merck Serono, Novartis and Almiral. M. Filippi is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Neurological Sciences, and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, the Italian Ministry of Health, the Italian Ministry of University and Research, and Fondazione Italiana Sclerosi Multipla. M.A. Rocca received consulting fees from Biogen, Bristol Myers Squibb, Eli Lilly, Janssen, Roche; and speaker honoraria from AstraZaneca, Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Horizon Therapeutics Italy, Merck Serono SpA, Novartis, Roche, Sanofi and Teva. She receives research support from the MS Society of Canada, the Italian Ministry of Health, the Italian Ministry of University and Research, and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for Multiple Sclerosis and Related Disorders.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preziosa, P., Storelli, L., Tedone, N. et al. Spatial correspondence among regional gene expressions and gray matter volume loss in multiple sclerosis. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02452-5

Search

Quick links