Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Microglia in neuroimmunopharmacology and drug addiction

Abstract

Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign “invaders”, thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammation induced by psychostimulants.
Fig. 2: Microglial dynamics in the brain.
Fig. 3: TLR4 signaling contributes to drug addiction.

Similar content being viewed by others

References

  1. Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits. 2013;7:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14:687–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Wightman RM, et al. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci. 2009;30:1117–27.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Salamone JD, Correa M, Mingote S, Weber SM. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther. 2003;305:1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Willuhn I, Wanat MJ, Clark JJ, Phillips PE. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci. 2010;3:29–71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry. 2021;26:234–46.

    Article  PubMed  Google Scholar 

  7. Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J. 2021;288:1462–74.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia EJ, Cain ME. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations. Eur J Neurosci. 2021;54:6382–96.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smajic S, Prada-Medina CA, Landoulsi Z, Ghelfi J, Delcambre S, Dietrich C, et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain. 2022;145:964–78.

    Article  PubMed  Google Scholar 

  10. Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca(2+) signaling. Mol Psychiatry. 2022;27:2470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hori M, Inoue M, Fukui S, Furukawa T, Abe H. Significance of serum enzyme changes after cardiac catheterization and selective coronary arteriography. Br Heart J. 1976;38:97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moreno-Manzano V. Ependymal cells in the spinal cord as neuronal progenitors. Curr Opin Pharmacol. 2020;50:82–87.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Li Z, Yang M, Wang F, Zhang Y, Li R, et al. Decoding the temporal and regional specification of microglia in the developing human brain. Cell Stem Cell. 2022;29:620–34.e626.

    Article  CAS  PubMed  Google Scholar 

  14. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162:712–25.

    Article  CAS  PubMed  Google Scholar 

  15. Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol. 2021;21:454–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klawonn AM, Fritz M, Castany S, Pignatelli M, Canal C, Simila F, et al. Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity. 2021;54:225–34.e226.

    Article  CAS  PubMed  Google Scholar 

  17. Audrain M, Haure-Mirande JV, Mleczko J, Wang M, Griffin JK, St George-Hyslop PH, et al. Reactive or transgenic increase in microglial TYROBP reveals a TREM2-independent TYROBP-APOE link in wild-type and Alzheimer’s-related mice. Alzheimers Dement. 2021;17:149–63.

    Article  CAS  PubMed  Google Scholar 

  18. He X, Wang X, Yang L, Yang Z, Yu W, Wang Y, et al. Intelligent lesion blood-brain barrier targeting nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharm Sin B. 2022;12:1987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Z, Li F, Ning J, Peng R, Shang J, Liu H, et al. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF-kappaB pathway through microbiota-gut-brain axis. Acta Pharm Sin B. 2021;11:2859–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kohno K, Shirasaka R, Yoshihara K, Mikuriya S, Tanaka K, Takanami K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science. 2022;376:86–90.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Lowe PP, Morel C, Ambade A, Iracheta-Vellve A, Kwiatkowski E, Satishchandran A, et al. Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations. J Neuroinflammation. 2020;17:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Green JM, Sundman MH, Chou YH. Opioid-induced microglia reactivity modulates opioid reward, analgesia, and behavior. Neurosci Biobehav Rev. 2022;135:104544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, et al. Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy. 2015;11:995–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He T, Shang J, Gao C, Guan X, Chen Y, Zhu L, et al. A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B. 2021;11:708–26.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao C, Hou W, Lei H, Huang L, Wang S, Cui D, et al. Potassium 2-(l-hydroxypentyl)-benzoate attenuates neuroinflammatory responses and upregulates heme oxygenase-1 in systemic lipopolysaccharide-induced inflammation in mice. Acta Pharm Sin B. 2017;7:470–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fox HC, D’Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, et al. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol. 2012;27:156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eidson LN, Murphy AZ. Inflammatory mediators of opioid tolerance: Implications for dependency and addiction. Peptides. 2019;115:51–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Costello EJ, Copeland WE, Shanahan L, Worthman CM, Angold A. C-reactive protein and substance use disorders in adolescence and early adulthood: a prospective analysis. Drug Alcohol Depend. 2013;133:712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozela E, Pietr M, Juknat A, Rimmerman N, Levy R, Vogel Z. Cannabinoids Delta(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells. J Biol Chem. 2010;285:1616–26.

    Article  CAS  PubMed  Google Scholar 

  31. Suryavanshi SV, Kovalchuk I, Kovalchuk O. Cannabinoids as key regulators of inflammasome signaling: a current perspective. Front Immunol. 2020;11:613613.

    Article  CAS  PubMed  Google Scholar 

  32. Beardsley PM, Shelton KL, Hendrick E, Johnson KW. The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol. 2010;637:102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Metz VE, Jones JD, Manubay J, Sullivan MA, Mogali S, Segoshi A, et al. Effects of ibudilast on the subjective, reinforcing, and analgesic effects of oxycodone in recently detoxified adults with opioid dependence. Neuropsychopharmacology. 2017;42:1825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vore AS, Barney TM, Deak MM, Varlinskaya EI, Deak T. Adolescent intermittent ethanol exposure produces Sex-Specific changes in BBB Permeability: a potential role for VEGFA. Brain Behav Immun. 2022;102:209–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turkheimer FE, Althubaity N, Schubert J, Nettis MA, Cousins O, Dima D, et al. Increased serum peripheral C-reactive protein is associated with reduced brain barriers permeability of TSPO radioligands in healthy volunteers and depressed patients: implications for inflammation and depression. Brain Behav Immun. 2021;91:487–97.

    Article  CAS  PubMed  Google Scholar 

  36. Goncalves J, Leitao RA, Higuera-Matas A, Assis MA, Coria SM, Fontes-Ribeiro C, et al. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav Immun. 2017;62:306–17.

    Article  CAS  PubMed  Google Scholar 

  37. Macur K, Ciborowski P. Immune system and methamphetamine: molecular basis of a relationship. Curr Neuropharmacol. 2021;19:2067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen LJ, Zhi X, Zhang KK, Wang LB, Li JH, Liu JL, et al. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem Toxicol. 2021;148:111946.

    Article  CAS  PubMed  Google Scholar 

  39. Moreira FP, Medeiros JR, Lhullier AC, Souza LD, Jansen K, Portela LV, et al. Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. Drug Alcohol Depend. 2016;158:181–5.

    Article  CAS  PubMed  Google Scholar 

  40. Valvassori SS, Tonin PT, Varela RB, Carvalho AF, Mariot E, Amboni RT, et al. Lithium modulates the production of peripheral and cerebral cytokines in an animal model of mania induced by dextroamphetamine. Bipolar Disord. 2015;17:507–17.

    Article  CAS  PubMed  Google Scholar 

  41. Ligeiro de Oliveira AP, Lino-dos-Santos-Franco A, Acceturi BG, Hamasato EK, Machado ID, Gimenes Junior JA, et al. Long-term amphetamine treatment exacerbates inflammatory lung reaction while decreases airway hyper-responsiveness after allergic stimulus in rats. Int Immunopharmacol. 2012;14:523–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yang T, Zang S, Wang Y, Zhu Y, Jiang L, Chen X, et al. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol Lett. 2020;333:150–8.

    Article  CAS  PubMed  Google Scholar 

  43. Northrop NA, Yamamoto BK. Persistent neuroinflammatory effects of serial exposure to stress and methamphetamine on the blood-brain barrier. J Neuroimmune Pharmacol. 2012;7:951–68.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quan Y, Jiang J, Dingledine R. EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem. 2013;288:9293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, et al. Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: involvement in oxidative stress, neuroinflammation, and pro-apoptosis-a review. Neurochem Res. 2018;43:66–78.

    Article  PubMed  Google Scholar 

  46. Kaushal N, Matsumoto RR. Role of sigma receptors in methamphetamine-induced neurotoxicity. Curr Neuropharmacol. 2011;9:54–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shah A, Silverstein PS, Singh DP, Kumar A. Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-kappaB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflammation. 2012;9:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Asadikaram G, Igder S, Jamali Z, Shahrokhi N, Najafipour H, Shokoohi M, et al. Effects of different concentrations of opium on the secretion of interleukin-6, interferon-gamma and transforming growth factor beta cytokines from jurkat cells. Addict Health. 2015;7:47–53.

    PubMed  PubMed Central  Google Scholar 

  49. Lashkarizadeh MR, Garshasbi M, Shabani M, Dabiri S, Hadavi H, Manafi-Anari H. Impact of opium addiction on levels of pro- and anti-inflammatory cytokines after surgery. Addict Health. 2016;8:9–15.

    PubMed  PubMed Central  Google Scholar 

  50. Chan YY, Yang SN, Lin JC, Chang JL, Lin JG, Lo WY. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Res. 2015;226:230–4.

    Article  CAS  PubMed  Google Scholar 

  51. Cornwell WD, Lewis MG, Fan X, Rappaport J, Rogers TJ. Effect of chronic morphine administration on circulating T cell population dynamics in rhesus macaques. J Neuroimmunol. 2013;265:43–50.

    Article  CAS  PubMed  Google Scholar 

  52. Liang Y, Chu H, Jiang Y, Yuan L. Morphine enhances IL-1beta release through toll-like receptor 4-mediated endocytic pathway in microglia. Purinergic Signal. 2016;12:637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pacifici R, di Carlo S, Bacosi A, Pichini S, Zuccaro P. Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int J Immunopharmacol. 2000;22:603–14.

    Article  CAS  PubMed  Google Scholar 

  54. Vassou D, Bakogeorgou E, Kampa M, Dimitriou H, Hatzoglou A, Castanas E. Opioids modulate constitutive B-lymphocyte secretion. Int Immunopharmacol. 2008;8:634–44.

    Article  CAS  PubMed  Google Scholar 

  55. Karatsoreos IN. Neuroinflammation may indeed be a major player in opioid use disorder in humans. Biol Psychiatry. 2021;90:511–2.

    Article  PubMed  Google Scholar 

  56. Seney ML, Kim SM, Glausier JR, Hildebrand MA, Xue X, Zong W, et al. Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Biol Psychiatry. 2021;90:550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci USA. 2012;109:6325–30.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Wang H, Huang M, Wang W, Zhang Y, Ma X, Luo L, et al. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res. 2021;165:105482.

    Article  CAS  PubMed  Google Scholar 

  59. Carranza-Aguilar CJ, Hernandez-Mendoza A, Mejias-Aponte C, Rice KC, Morales M, Gonzalez-Espinosa C, et al. Morphine and fentanyl repeated administration induces different levels of NLRP3-dependent pyroptosis in the dorsal raphe nucleus of male rats via cell-specific activation of TLR4 and opioid receptors. Cell Mol Neurobiol. 2022;42:677–94.

    Article  CAS  PubMed  Google Scholar 

  60. Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-Gonzalez M, Delgado-Garcia JM, Gruart A, et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013;123:2816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muthumalage T, Rahman I. Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts. Toxicol Appl Pharmacol. 2019;382:114713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeisley DJ, Arabiyat AS, Hahn MS. Cannabidiol-driven alterations to inflammatory protein landscape of lipopolysaccharide-activated macrophages in vitro may be mediated by autophagy and oxidative stress. Cannabis Cannabinoid Res. 2021;6:253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu C, Ma H, Slitt AL, Seeram NP. Inhibitory effect of cannabidiol on the activation of NLRP3 inflammasome is associated with its modulation of the P2X7 receptor in human monocytes. J Nat Prod. 2020;83:2025–9.

    Article  CAS  PubMed  Google Scholar 

  64. Srivastava MD, Srivastava BI, Brouhard B. Delta9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology. 1998;40:179–85.

    Article  CAS  PubMed  Google Scholar 

  65. Fischer-Stenger K, Dove Pettit DA, Cabral GA. Delta 9-tetrahydrocannabinol inhibition of tumor necrosis factor-alpha: suppression of post-translational events. J Pharmacol Exp Ther. 1993;267:1558–65.

    CAS  PubMed  Google Scholar 

  66. Zhu W, Newton C, Daaka Y, Friedman H, Klein TW. delta 9-Tetrahydrocannabinol enhances the secretion of interleukin 1 from endotoxin-stimulated macrophages. J Pharmacol Exp Ther. 1994;270:1334–9.

    CAS  PubMed  Google Scholar 

  67. Eisenstein TK, Meissler JJ. Effects of cannabinoids on T-cell function and resistance to infection. J Neuroimmune Pharmacol. 2015;10:204–16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ranieri R, Laezza C, Bifulco M, Marasco D, Malfitano AM. Cannabinoids and neuro-inflammation: regulation of brain immune response. Recent Pat CNS Drug Discov. 2016;10:178–203.

    Article  PubMed  Google Scholar 

  69. Mecha M, Feliu A, Inigo PM, Mestre L, Carrillo-Salinas FJ, Guaza C. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol Dis. 2013;59:141–50.

    Article  CAS  PubMed  Google Scholar 

  70. Dos-Santos-Pereira M, Guimaraes FS, Del-Bel E, Raisman-Vozari R, Michel PP. Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-kappaB-dependent signaling and glucose consumption. Glia. 2020;68:561–73.

    Article  PubMed  Google Scholar 

  71. Garcia-Baos A, Puig-Reyne X, Garcia-Algar O, Valverde O. Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed Pharmacother. 2021;141:111813.

    Article  CAS  PubMed  Google Scholar 

  72. Majdi F, Taheri F, Salehi P, Motaghinejad M, Safari S. Cannabinoids Delta(9)-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-kappaB signaling. Med Hypotheses. 2019;133:109371.

    Article  CAS  PubMed  Google Scholar 

  73. Castelli MP, Madeddu C, Casti A, Casu A, Casti P, Scherma M, et al. Delta9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity. PLoS ONE. 2014;9:e98079.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  74. Zamberletti E, Gabaglio M, Prini P, Rubino T, Parolaro D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol. 2015;25:2404–15.

    Article  CAS  PubMed  Google Scholar 

  75. Bohlen CJ, Friedman BA, Dejanovic B, Sheng M. Microglia in brain development, homeostasis, and neurodegeneration. Annu Rev Genet. 2019;53:263–88.

    Article  CAS  PubMed  Google Scholar 

  76. Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity. 2015;43:92–106.

    Article  CAS  PubMed  Google Scholar 

  77. Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS. Cell. 2014;158:15–24.

    Article  CAS  PubMed  Google Scholar 

  78. Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179:292–311.

    Article  CAS  PubMed  Google Scholar 

  79. Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener. 2022;17:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity. 2021;54:1527–42.e1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170:649–63.e613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Linker KE, Gad M, Tawadrous P, Cano M, Green KN, Wood MA, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Brown KT, Levis SC, O’Neill CE, Northcutt AL, Fabisiak TJ, Watkins LR, et al. Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking. Brain Behav Immun. 2018;67:130–8.

    Article  CAS  PubMed  Google Scholar 

  84. Pascoli V, Terrier J, Hiver A, Luscher C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron. 2015;88:1054–66.

    Article  CAS  PubMed  Google Scholar 

  85. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, et al. Addiction as a stress surfeit disorder. Neuropharmacology. 2014;76:370–82.

    Article  CAS  PubMed  Google Scholar 

  86. Adeluyi A, Guerin L, Fisher ML, Galloway A, Cole RD, Chan SSL, et al. Microglia morphology and proinflammatory signaling in the nucleus accumbens during nicotine withdrawal. Sci Adv. 2019;5:eaax7031.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Reiss D, Maduna T, Maurin H, Audouard E, Gaveriaux-Ruff C. Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice. J Neurosci Res. 2022;100:203–19.

    Article  CAS  PubMed  Google Scholar 

  88. Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M, et al. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat Med. 2017;23:355–60.

    Article  CAS  PubMed  Google Scholar 

  89. Yahyavi-Firouz-Abadi N, See RE. Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacol Ther. 2009;124:235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee JS, Lee SB, Kim DW, Shin N, Jeong SJ, Yang CH, et al. Social isolation-related depression accelerates ethanol intake via microglia-derived neuroinflammation. Sci Adv. 2021;7:eabj3400.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. LaVoie MJ, Card JP, Hastings TG. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol. 2004;187:47–57.

    Article  CAS  PubMed  Google Scholar 

  92. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci. 2008;28:5756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, et al. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia. 2011;59:1850–63.

    Article  PubMed  Google Scholar 

  94. Chaves Filho AJM, Cunha NL, Rodrigues PA, de Souza AG, Soares MV, Juca PM, et al. Doxycycline reverses cognitive impairment, neuroinflammation and oxidative imbalance induced by D-amphetamine mania model in mice: A promising drug repurposing for bipolar disorder treatment? Eur Neuropsychopharmacol. 2021;42:57–74.

    Article  CAS  PubMed  Google Scholar 

  95. Kim B, Yun J, Park B. Methamphetamine-induced neuronal damage: neurotoxicity and neuroinflammation. Biomol Ther. 2020;28:381–8.

    Article  CAS  Google Scholar 

  96. Selfridge BR, Wang X, Zhang Y, Yin H, Grace PM, Watkins LR, et al. Structure-activity relationships of (+)-naltrexone-inspired toll-like receptor 4 (TLR4) antagonists. J Med Chem. 2015;58:5038–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang H, Largent-Milnes TM, Vanderah TW. Glial neuroimmune signaling in opioid reward. Brain Res Bull. 2020;155:102–11.

    Article  PubMed  Google Scholar 

  98. Koob GF. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry. 2020;87:44–53.

    Article  CAS  PubMed  Google Scholar 

  99. Frank MG, Watkins LR, Maier SF. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun. 2011;25:S21–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang XQ, Cui Y, Cui Y, Chen Y, Na XD, Chen FY, et al. Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav Immun. 2012;26:318–25.

    Article  CAS  PubMed  Google Scholar 

  101. Liao K, Niu F, Hu G, Yang L, Dallon B, Villarreal D, et al. Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J Extracell Vesicles. 2020;10:e12027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hutchinson MR, Lewis SS, Coats BD, Rezvani N, Zhang Y, Wieseler JL, et al. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience. 2010;167:880–93.

    Article  CAS  PubMed  Google Scholar 

  103. McCarthy RC, Lu DY, Alkhateeb A, Gardeck AM, Lee CH, Wessling-Resnick M. Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation. 2016;13:21.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Martin-Moreno AM, Brera B, Spuch C, Carro E, Garcia-Garcia L, Delgado M, et al. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflammation. 2012;9:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Navarrete F, Garcia-Gutierrez MS, Gasparyan A, Austrich-Olivares A, Manzanares J. Role of cannabidiol in the therapeutic intervention for substance use disorders. Front Pharmacol. 2021;12:626010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ledesma JC, Manzanedo C, Aguilar MA. Cannabidiol prevents several of the behavioral alterations related to cocaine addiction in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110390.

    Article  CAS  PubMed  Google Scholar 

  107. Machelska H, Celik MO. Opioid receptors in immune and glial cells-implications for pain control. Front Immunol. 2020;11:300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang YS, Hung TW, Bae EK, Wu KJ, Hsieh W, Yu SJ. Naltrexone is neuroprotective against traumatic brain injury in mu opioid receptor knockout mice. CNS Neurosci Ther. 2021;27:831–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu HE, Hong JS, Tseng LF. Stereoselective action of (+)-morphine over (-)-morphine in attenuating the (-)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse. Eur J Pharmacol. 2007;571:145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu HE, Sun HS, Cheng CW, Terashvili M, Tseng LF. dextro-Naloxone or levo-naloxone reverses the attenuation of morphine antinociception induced by lipopolysaccharide in the mouse spinal cord via a non-opioid mechanism. Eur J Neurosci. 2006;24:2575–80.

    Article  PubMed  Google Scholar 

  111. Garaschuk O, Verkhratsky A. Physiology of microglia. Methods Mol Biol. 2019;2034:27–40.

    Article  CAS  PubMed  Google Scholar 

  112. Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal. 2007;7:98–111.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hutchinson MR, Northcutt AL, Hiranita T, Wang X, Lewis SS, Thomas J, et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012;32:11187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang Z, Zhou T, Sun X, Zheng Y, Cheng B, Li M, et al. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018;25:180–9.

    Article  CAS  PubMed  Google Scholar 

  115. Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, et al. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol. 2016;215:719–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  CAS  PubMed  Google Scholar 

  117. Wang X, Northcutt AL, Cochran TA, Zhang X, Fabisiak TJ, Haas ME, et al. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem Neurosci. 2019;10:3622–34.

    Article  CAS  PubMed  Google Scholar 

  118. Due MR, Piekarz AD, Wilson N, Feldman P, Ripsch MS, Chavez S, et al. Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J Neuroinflammation. 2012;9:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kashima DT, Grueter BA. Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. Proc Natl Acad Sci USA. 2017;114:8865–70.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Northcutt AL, Hutchinson MR, Wang X, Baratta MV, Hiranita T, Cochran TA, et al. DAT isn’t all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol Psychiatry. 2015;20:1525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li T, Li F, Liu X, Liu J, Li D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-kappaB and MAPK signaling pathways. Phytother Res. 2019;33:756–67.

    Article  CAS  PubMed  Google Scholar 

  122. Eidson LN, Inoue K, Young LJ, Tansey MG, Murphy AZ. Toll-like receptor 4 mediates morphine-induced neuroinflammation and tolerance via soluble tumor necrosis factor signaling. Neuropsychopharmacology. 2017;42:661–70.

    Article  CAS  PubMed  Google Scholar 

  123. Olmos G, Llado J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014;2014:861231.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25:3219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Matsunaga M, Isowa T, Murakami H, Kasugai K, Yoneda M, Kaneko H, et al. Association of polymorphism in the human mu-opioid receptor OPRM1 gene with proinflammatory cytokine levels and health perception. Brain Behav Immun. 2009;23:931–5.

    Article  CAS  PubMed  Google Scholar 

  126. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411.

    Article  CAS  PubMed  Google Scholar 

  127. Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V, et al. Tumor necrosis factor and interleukin-1beta modulate synaptic plasticity during neuroinflammation. Neural Plast. 2018;2018:8430123.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Song C, Horrobin DF, Leonard BE. The comparison of changes in behavior, neurochemistry, endocrine, and immune functions after different routes, doses and durations of administrations of IL-1beta in rats. Pharmacopsychiatry. 2006;39:88–99.

    Article  CAS  PubMed  Google Scholar 

  129. Yan X, Jiang E, Weng HR. Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta. J Neuroinflammation. 2015;12:222.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, et al. IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013;125:897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Eid T, Gruenbaum SE, Dhaher R, Lee TW, Zhou Y, Danbolt NC. The glutamate-glutamine cycle in epilepsy. Adv Neurobiol. 2016;13:351–400.

    Article  PubMed  Google Scholar 

  132. Zumkehr J, Rodriguez-Ortiz CJ, Medeiros R, Kitazawa M. Inflammatory cytokine, IL-1beta, regulates glial glutamate transporter via microRNA-181a in vitro. J Alzheimers Dis. 2018;63:965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang S, Cheng Q, Malik S, Yang J. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther. 2000;292:497–504.

    CAS  PubMed  Google Scholar 

  134. Bachtell R, Hutchinson MR, Wang X, Rice KC, Maier SF, Watkins LR. Targeting the toll of drug abuse: the translational potential of toll-like receptor 4. CNS Neurol Disord Drug Targets. 2015;14:692–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wan F, Zang S, Yu G, Xiao H, Wang J, Tang J. Ginkgolide B suppresses methamphetamine-induced microglial activation through TLR4-NF-kappaB signaling pathway in BV2 cells. Neurochem Res. 2017;42:2881–91.

    Article  CAS  PubMed  Google Scholar 

  136. Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, et al. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFkappaB signaling pathway in the mouse hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110109.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today. 2020;25:1074–85.

    Article  CAS  PubMed  Google Scholar 

  138. Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, et al. Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol. 2012;72:536–49.

    Article  CAS  PubMed  Google Scholar 

  139. Pereira FC, Rolo MR, Marques E, Mendes VM, Ribeiro CF, Ali SF, et al. Acute increase of the glutamate-glutamine cycling in discrete brain areas after administration of a single dose of amphetamine. Ann N Y Acad Sci. 2008;1139:212–21.

    Article  CAS  PubMed  ADS  Google Scholar 

  140. Simoes PF, Silva AP, Pereira FC, Marques E, Milhazes N, Borges F, et al. Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex. Ann N Y Acad Sci. 2008;1139:232–41.

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Goodwin JS, Larson GA, Swant J, Sen N, Javitch JA, Zahniser NR, et al. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. J Biol Chem. 2009;284:2978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fluyau D, Revadigar N, Pierre CG. Clinical benefits and risks of N-methyl-d-aspartate receptor antagonists to treat severe opioid use disorder: a systematic review. Drug Alcohol Depend. 2020;208:107845.

    Article  CAS  PubMed  Google Scholar 

  143. Elias AM, Pepin MJ, Brown JN. Adjunctive memantine for opioid use disorder treatment: a systematic review. J Subst Abus Treat. 2019;107:38–43.

    Article  Google Scholar 

  144. Herman BH, Vocci F, Bridge P. The effects of NMDA receptor antagonists and nitric oxide synthase inhibitors on opioid tolerance and withdrawal. Medication development issues for opiate addiction. Neuropsychopharmacology. 1995;13:269–93.

    Article  CAS  PubMed  Google Scholar 

  145. Elliott K, Hynansky A, Inturrisi CE. Dextromethorphan attenuates and reverses analgesic tolerance to morphine. Pain. 1994;59:361–8.

    Article  CAS  PubMed  Google Scholar 

  146. Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med. 2018;10:e8743.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J. Microglial activation modulated by P2X4R in ischemia and repercussions in Alzheimer’s disease. Front Physiol. 2022;13:814999.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 2013;16:183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schwarz JM, Hutchinson MR, Bilbo SD. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci. 2011;31:17835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lacagnina MJ, Kopec AM, Cox SS, Hanamsagar R, Wells C, Slade S, et al. Opioid self-administration is attenuated by early-life experience and gene therapy for anti-inflammatory IL-10 in the nucleus accumbens of male rats. Neuropsychopharmacology. 2017;42:2128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dengler EC, Alberti LA, Bowman BN, Kerwin AA, Wilkerson JL, Moezzi DR, et al. Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain. J Neuroinflammation. 2014;11:92.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kwilasz AJ, Green Fulgham SM, Duran-Malle JC, Schrama AEW, Mitten EH, Todd LS, et al. Toll-like receptor 2 and 4 antagonism for the treatment of experimental autoimmune encephalomyelitis (EAE)-related pain. Brain Behav Immun. 2021;93:80–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gravel M, Beland LC, Soucy G, Abdelhamid E, Rahimian R, Gravel C, et al. IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase 1. J Neurosci. 2016;36:1031–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Watkins LR, Chavez RA, Landry R, Fry M, Green-Fulgham SM, Coulson JD, et al. Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: toxicology and pain efficacy assessments. Brain Behav Immun. 2020;90:155–66.

    Article  CAS  PubMed  Google Scholar 

  155. Yamazaki T, Anraku T, Matsuzawa S. Ibudilast, a mixed PDE3/4 inhibitor, causes a selective and nitric oxide/cGMP-independent relaxation of the intracranial vertebrobasilar artery. Eur J Pharmacol. 2011;650:605–11.

    Article  CAS  PubMed  Google Scholar 

  156. Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, et al. Ibudilast attenuates folic acid-induced acute kidney injury by blocking pyroptosis through TLR4-mediated NF-kappaB and MAPK signaling pathways. Front Pharmacol. 2021;12:650283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Babu S, Hightower BG, Chan J, Zurcher NR, Kivisakk P, Tseng CJ, et al. Ibudilast (MN-166) in amyotrophic lateral sclerosis- an open label, safety and pharmacodynamic trial. Neuroimage Clin. 2021;30:102672.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Poland RS, Hahn Y, Knapp PE, Beardsley PM, Bowers MS. Ibudilast attenuates expression of behavioral sensitization to cocaine in male and female rats. Neuropharmacology. 2016;109:281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Worley MJ, Swanson AN, Heinzerling KG, Roche DJ, Shoptaw S. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend. 2016;162:245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cooper ZD, Johnson KW, Pavlicova M, Glass A, Vosburg SK, Sullivan MA, et al. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addict Biol. 2016;21:895–903.

    Article  CAS  PubMed  Google Scholar 

  161. Li MJ, Briones MS, Heinzerling KG, Kalmin MM, Shoptaw SJ. Ibudilast attenuates peripheral inflammatory effects of methamphetamine in patients with methamphetamine use disorder. Drug Alcohol Depend. 2020;206:107776.

    Article  CAS  PubMed  Google Scholar 

  162. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem. 2007;282:15208–16.

    Article  CAS  PubMed  Google Scholar 

  164. Yoshida T, Das NA, Carpenter AJ, Izadpanah R, Kumar SA, Gautam S, et al. Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-kappaB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cell Signal. 2020;73:109690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nikodemova M, Duncan ID, Watters JJ. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IkappaBalpha degradation in a stimulus-specific manner in microglia. J Neurochem. 2006;96:314–23.

    Article  CAS  PubMed  Google Scholar 

  166. Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun. 2009;23:75–84.

    Article  CAS  PubMed  Google Scholar 

  167. Attarzadeh-Yazdi G, Arezoomandan R, Haghparast A. Minocycline, an antibiotic with inhibitory effect on microglial activation, attenuates the maintenance and reinstatement of methamphetamine-seeking behavior in rat. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:142–8.

    Article  CAS  PubMed  Google Scholar 

  168. Arezoomandan R, Haghparast A. Administration of the glial cell modulator, minocycline, in the nucleus accumbens attenuated the maintenance and reinstatement of morphine-seeking behavior. Can J Physiol Pharmacol. 2016;94:257–64.

    Article  CAS  PubMed  Google Scholar 

  169. Snider SE, Hendrick ES, Beardsley PM. Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol. 2013;701:124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hashimoto K, Ishima T, Fujita Y, Zhang L. [Antibiotic drug minocycline: a potential therapeutic drug for methamphetamine-related disorders]. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2013;48:118–25.

    CAS  PubMed  Google Scholar 

  171. Arezoomandan R, Aliaghaei A, Khodagholi F, Haghparast A. Minocycline induces the expression of intra-accumbal glutamate transporter-1 in the morphine-dependent rats. Asian J Psychiatr. 2019;46:70–73.

    Article  PubMed  Google Scholar 

  172. Avalos MP, Guzman AS, Rigoni D, Gorostiza EA, Sanchez MA, Mongi-Bragato B, et al. Minocycline prevents chronic restraint stress-induced vulnerability to developing cocaine self-administration and associated glutamatergic mechanisms: a potential role of microglia. Brain Behav Immun. 2022;101:359–76.

    Article  CAS  PubMed  Google Scholar 

  173. Arout CA, Waters AJ, MacLean RR, Compton P, Sofuoglu M. Minocycline does not affect experimental pain or addiction-related outcomes in opioid maintained patients. Psychopharmacology. 2019;236:2857–66.

    Article  CAS  PubMed  Google Scholar 

  174. Li SQ, Xing YL, Chen WN, Yue SL, Li L, Li WB. Activation of NMDA receptor is associated with up-regulation of COX-2 expression in the spinal dorsal horn during nociceptive inputs in rats. Neurochem Res. 2009;34:1451–63.

    Article  CAS  PubMed  Google Scholar 

  175. Liu Q, Zhang Y, Liu S, Liu Y, Yang X, Liu G, et al. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca(2+)-dependent PKC/p38MAPK/NF-kappaB pathway. J Neuroinflammation. 2019;16:10.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Liu S, Liu X, Xiong H, Wang W, Liu Y, Yin L, et al. CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice. Brain Behav Immun. 2019;80:711–24.

    Article  CAS  PubMed  Google Scholar 

  177. Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res. 2005;1050:190–8.

    Article  CAS  PubMed  Google Scholar 

  178. Guo RX, Zhang M, Liu W, Zhao CM, Cui Y, Wang CH, et al. NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci Lett. 2009;467:95–99.

    Article  CAS  PubMed  Google Scholar 

  179. Fan Y, Niu H, Rizak JD, Li L, Wang G, Xu L, et al. Combined action of MK-801 and ceftriaxone impairs the acquisition and reinstatement of morphine-induced conditioned place preference, and delays morphine extinction in rats. Neurosci Bull. 2012;28:567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chen LJ, He JT, Pan M, Liu JL, Zhang KK, Li JH, et al. Antibiotics attenuate methamphetamine-induced hepatotoxicity by regulating oxidative stress and TLR4/MyD88/Traf6 axis. Front Pharmacol. 2021;12:716703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Green KN, Crapser JD, Hohsfield LA. To kill a microglia: a case for CSF1R inhibitors. Trends Immunol. 2020;41:771–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. De Luca SN, Sominsky L, Soch A, Wang H, Ziko I, Rank MM, et al. Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry. Brain Behav Immun. 2019;77:77–91.

    Article  PubMed  Google Scholar 

  183. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun. 2019;10:3758.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  184. Sharon A, Erez H, Spira ME. Significant sex differences in the efficacy of the CSF1R inhibitor-PLX5622 on rat brain microglia elimination. Pharmaceuticals. 2022;15:569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bellver-Landete V, Bretheau F, Mailhot B, Vallieres N, Lessard M, Janelle ME, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  186. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain. 2016;139:1265–81.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, Judak L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  188. Najafi AR, Crapser J, Jiang S, Ng W, Mortazavi A, West BL, et al. A limited capacity for microglial repopulation in the adult brain. Glia. 2018;66:2385–96.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Elmore MR, Lee RJ, West BL, Green KN. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS ONE. 2015;10:e0122912.

    Article  PubMed  PubMed Central  Google Scholar 

  190. da Silva MCM, Gomes GF, de Barros Fernandes H, da Silva AM, Teixeira AL, Moreira FA, et al. Inhibition of CSF1R, a receptor involved in microglia viability, alters behavioral and molecular changes induced by cocaine. Sci Rep. 2021;11:15989.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  191. Wu CM, Lai TW. Microglia depletion by PLX3397 has no effect on cocaine-induced behavioral sensitization in male mice. Brain Res. 2021;1761:147391.

    Article  CAS  PubMed  ADS  Google Scholar 

  192. Walter TJ, Crews FT. Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal. J Neuroinflammation. 2017;14:86.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Xu Z, Zhou X, Peng B, Rao Y. Microglia replacement by bone marrow transplantation (Mr BMT) in the central nervous system of adult mice. STAR Protoc. 2021;2:100666.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Xu Z, Peng B, Rao Y. Microglia replacement by microglia transplantation (Mr MT) in the adult mouse brain. STAR Protoc. 2021;2:100665.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Xu Z, Rao Y, Peng B. Protocol for microglia replacement by peripheral blood (Mr PB). STAR Protoc. 2021;2:100613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xu Z, Rao Y, Huang Y, Zhou T, Feng R, Xiong S, et al. Efficient strategies for microglia replacement in the central nervous system. Cell Rep. 2020;32:108041.

    Article  CAS  PubMed  Google Scholar 

  197. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005;11:146–52.

    Article  CAS  PubMed  Google Scholar 

  198. Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci. 2009;12:1361–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci USA. 2012;109:18150–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  200. Zhu C, Herrmann US, Falsig J, Abakumova I, Nuvolone M, Schwarz P, et al. A neuroprotective role for microglia in prion diseases. J Exp Med. 2016;213:1047–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Parusel S, Yi MH, Hunt CL, Wu LJ. Chemogenetic and optogenetic manipulations of microglia in chronic pain. Neurosci Bull. 2023;39:368–78.

    Article  PubMed  Google Scholar 

  202. Yi MH, Liu YU, Liu K, Chen T, Bosco DB, Zheng J, et al. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun. 2021;92:78–89.

    Article  CAS  PubMed  Google Scholar 

  203. Binning W, Hogan-Cann AE, Yae Sakae D, Maksoud M, Ostapchenko V, Al-Onaizi M, et al. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain Behav Immun. 2020;88:791–801.

    Article  CAS  PubMed  Google Scholar 

  204. Nagarajan, N, and Capecchi, MR Optogenetic stimulation of mouse Hoxb8 microglia in specific regions of the brain induces anxiety, grooming, or both. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-02019-w.

  205. Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neurosci Lett. 2019;707:134310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by STI2030-Major Projects [2021ZD0203000(2021ZD0203003)], the Beijing National Laboratory for Molecular Sciences (BNLMS202108), and the Chinese Academy of Sciences Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

Hongyuan Li: organizational framework and construction, collected data, paper drafting; Linda R Watkins: revision and analysis; Xiaohui Wang: proposal, design and final revision.

Corresponding author

Correspondence to Xiaohui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Watkins, L.R. & Wang, X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02443-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02443-6

This article is cited by

Search

Quick links