Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BACE1 in PV interneuron tunes hippocampal CA1 local circuits and resets priming of fear memory extinction

Abstract

BACE1 is the rate-limiting enzyme for β-amyloid (Aβ) production and therefore is considered a prime drug target for treating Alzheimer’s disease (AD). Nevertheless, the BACE1 inhibitors failed in clinical trials, even exhibiting cognitive worsening, implying that BACE1 may function in regulating cognition-relevant neural circuits. Here, we found that parvalbumin-positive inhibitory interneurons (PV INs) in hippocampal CA1 express BACE1 at a high level. We designed and developed a mouse strain with conditional knockout of BACE1 in PV neurons. The CA1 fast-spiking PV INs with BACE1 deletion exhibited an enhanced response of postsynaptic N-methyl-D-aspartate (NMDA) receptors to local stimulation on CA1 oriens, with average intrinsic electrical properties and fidelity in synaptic integration. Intriguingly, the BACE1 deletion reorganized the CA1 recurrent inhibitory motif assembled by the heterogeneous pyramidal neurons (PNs) and the adjacent fast-spiking PV INs from the superficial to the deep layer. Moreover, the conditional BACE1 deletion impaired the AMPARs-mediated excitatory transmission of deep CA1 PNs. Further rescue experiments confirmed that these phenotypes require the enzymatic activity of BACE1. Above all, the BACE1 deletion resets the priming of the fear memory extinction. Our findings suggest a neuron-specific working model of BACE1 in regulating learning and memory circuits. The study may provide a potential path of targeting BACE1 and NMDAR together to circumvent cognitive worsening due to a single application of BACE1 inhibitor in AD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BACE1 deletion did not change the electrophysiological properties of CA1 PV INs.
Fig. 2: The CA1 PV INs with BACE1 deletion received a normal AMPAR-, but an enhanced NMDAR-mediated excitatory transmission.
Fig. 3: BACE1 deletion made MK-801 a greater degree of blockade with NMDARs but left intact the reliability in synaptic integration of CA1 PV INs.
Fig. 4: BACE1 deletion in PV INs reorganized the inhibitory/excitatory synaptic transmission on CA1 PNs in a non-uniform pattern.
Fig. 5: Specific local recovery of BACE1 expression rescued the NMDAR EPSC in PV INs and AMPAR EPSC in CA1 deep layer PNs in an enzymatic-dependent manner.
Fig. 6: BACE1 deletion in CA1 PV INs reset the priming of fear memory extinction.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, et al. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci. 1999;14:419–27.

    Article  CAS  PubMed  Google Scholar 

  2. Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci USA. 2000;97:1456–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 1999;402:537–40.

    Article  CAS  PubMed  Google Scholar 

  4. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999;286:735–41.

    Article  CAS  PubMed  Google Scholar 

  5. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, et al. Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 1999;402:533–7.

    Article  CAS  PubMed  Google Scholar 

  6. Yan R, Fan Q, Zhou J, Vassar R. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci Biobehav Rev. 2016;65:326–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das B, Yan R. Role of BACE1 in Alzheimer’s synaptic function. Transl Neurodegener. 2017;6:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wessels AM, Lines C, Stern RA, Kost J, Voss T, Mozley LH, et al. Cognitive outcomes in trials of two BACE inhibitors in Alzheimer’s disease. Alzheimers Dement. 2020;16:1483–92.

    Article  PubMed  Google Scholar 

  9. Zhu K, Peters F, Filser S, Herms J. Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry. 2018;84:478–87.

    Article  CAS  PubMed  Google Scholar 

  10. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, et al. The beta-Secretase BACE1 in Alzheimer’s Disease. Biol Psychiatry. 2021;89:745–56.

    Article  CAS  PubMed  Google Scholar 

  11. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126:329–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, et al. BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci. 2001;4:233–4.

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci. 2006;9:1520–5.

    Article  CAS  PubMed  Google Scholar 

  14. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science 2006;314:664–6.

    Article  CAS  PubMed  Google Scholar 

  15. Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005;25:11693–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Munro KM, Nash A, Pigoni M, Lichtenthaler SF, Gunnersen JM. Functions of the Alzheimer’s Disease Protease BACE1 at the Synapse in the Central Nervous System. J Mol Neurosci. 2016;60:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu X, Zhou X, He W, Yang J, Xiong W, Wong P, et al. BACE1 deficiency causes altered neuronal activity and neurodegeneration. J Neurosci. 2010;30:8819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol Neurodegener. 2010;5:31.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci USA. 2008;105:5585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai J, Qi X, Kociok N, Skosyrski S, Emilio A, Ruan Q, et al. beta-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med. 2012;4:980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehnert S, Hartmann S, Hessler S, Adelsberger H, Huth T, Alzheimer C. Ion channel regulation by beta-secretase BACE1 - enzymatic and non-enzymatic effects beyond Alzheimer’s disease. Channels (Austin). 2016;10:365–78.

    Article  PubMed  Google Scholar 

  22. Hitt B, Riordan SM, Kukreja L, Eimer WA, Rajapaksha TW, Vassar R. beta-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem. 2012;287:38408–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev. 2017;97:1619–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 2010;68:557–69.

    Article  CAS  PubMed  Google Scholar 

  25. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  26. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    Article  CAS  PubMed  Google Scholar 

  27. Booker SA, Wyllie DJA. NMDA receptor function in inhibitory neurons. Neuropharmacology 2021;196:108609.

    Article  CAS  PubMed  Google Scholar 

  28. Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA. 1988;85:1307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol. 1997;499:27–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tovar KR, Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron 2002;34:255–64.

    Article  CAS  PubMed  Google Scholar 

  31. Song X, Jensen MO, Jogini V, Stein RA, Lee CH, McHaourab HS, et al. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 2018;556:515–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharm Rev. 2021;73:298–487.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 2001;293:1159–63.

    Article  CAS  PubMed  Google Scholar 

  34. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 2008;321:53–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 2009;462:353–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science 2014;345:1255263.

    Article  PubMed  Google Scholar 

  37. Li Y, Xu J, Liu Y, Zhu J, Liu N, Zeng W, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci. 2017;20:559–70.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 2014;82:1129–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soltesz I, Losonczy A. CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat Neurosci. 2018;21:484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin S, Agerman K, Kolmodin K, Gustafsson E, Dahlqvist C, Jureus A, et al. Evidence for dimeric BACE-mediated APP processing. Biochem Biophys Res Commun. 2010;393:21–7.

    Article  CAS  PubMed  Google Scholar 

  41. Morris NP, Harris SJ, Henderson Z. Parvalbumin-immunoreactive, fast-spiking neurons in the medial septum/diagonal band complex of the rat: intracellular recordings in vitro. Neuroscience 1999;92:589–600.

    Article  CAS  PubMed  Google Scholar 

  42. Wu M, Shanabrough M, Leranth C, Alreja M. Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. J Neurosci. 2000;20:3900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry. 2015;77:729–39.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu K, Xiang X, Filser S, Marinkovic P, Dorostkar MM, Crux S, et al. Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6. Biol Psychiatry. 2018;83:428–37.

    Article  CAS  PubMed  Google Scholar 

  45. Das B, Singh N, Yao AY, Zhou J, He W, Hu X, et al. BACE1 controls synaptic function through modulating release of synaptic vesicles. Mol Psychiatry. 2021;26:6394–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lasztoczi B, Klausberger T. Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 2014;81:1126–39.

    Article  CAS  PubMed  Google Scholar 

  47. Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S, et al. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J Biol Chem. 2005;280:30797–806.

    Article  CAS  PubMed  Google Scholar 

  48. Kim DY, Carey BW, Wang H, Ingano LA, Binshtok AM, Wertz MH, et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat Cell Biol. 2007;9:755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sachse CC, Kim YH, Agsten M, Huth T, Alzheimer C, Kovacs DM, et al. BACE1 and presenilin/gamma-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. FASEB J. 2013;27:2458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hessler S, Zheng F, Hartmann S, Rittger A, Lehnert S, Volkel M, et al. beta-Secretase BACE1 regulates hippocampal and reconstituted M-currents in a beta-subunit-like fashion. J Neurosci. 2015;35:3298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hartmann S, Zheng F, Kyncl MC, Karch S, Voelkl K, Zott B, et al. beta-Secretase BACE1 Promotes Surface Expression and Function of Kv3.4 at Hippocampal Mossy Fiber Synapses. J Neurosci. 2018;38:3480–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huth T, Schmidt-Neuenfeldt K, Rittger A, Saftig P, Reiss K, Alzheimer C. Non-proteolytic effect of beta-site APP-cleaving enzyme 1 (BACE1) on sodium channel function. Neurobiol Dis. 2009;33:282–9.

    Article  CAS  PubMed  Google Scholar 

  53. Du J, Zhang L, Weiser M, Rudy B, McBain CJ. Developmental expression and functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus. J Neurosci. 1996;16:506–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012;149:708–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, et al. Nav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer’s Disease. Neuron 2018;98:75–89. e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuhn PH, Koroniak K, Hogl S, Colombo A, Zeitschel U, Willem M, et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 2012;31:3157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song JY, Ichtchenko K, Sudhof TC, Brose N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA. 1999;96:1100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Budreck EC, Kwon OB, Jung JH, Baudouin S, Thommen A, Kim HS, et al. Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci USA. 2013;110:725–30.

    Article  CAS  PubMed  Google Scholar 

  59. Wu X, Morishita WK, Riley AM, Hale WD, Sudhof TC, Malenka RC. Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. Neuron 2019;102:621–35. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, et al. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 2012;76:396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K, et al. Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 2012;76:410–22.

    Article  CAS  PubMed  Google Scholar 

  62. Polepalli JS, Wu H, Goswami D, Halpern CH, Sudhof TC, Malenka RC. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network. Nat Neurosci. 2017;20:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 2013;504:272–6.

    Article  CAS  PubMed  Google Scholar 

  64. Kim Y, Spruston N. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 2012;22:693–706.

    Article  PubMed  Google Scholar 

  65. Graves AR, Moore SJ, Bloss EB, Mensh BD, Kath WL, Spruston N. Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. Neuron 2012;76:776–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Levinson JN, El-Husseini A. Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 2005;48:171–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hua Li and Hua Wei from Capital Medical University, China for their technical support. This work was supported by the National Natural Science Foundation of China (81771145, 81971004, 81571038 to YZ), Beijing Natural Science Foundation (5202006 to YZ).

Author information

Authors and Affiliations

Authors

Contributions

Virus-injection, tests of behavior and chemogenetics were performed by XX; physiological data were provided by XW, KZ and YZ; LL performed immunostaining and reconstruction of dendritic spine; XX and other co-authors performed quality control and statistical analysis in double-blind for data. YZ designed the study and wrote the manuscript with all other authors’ help.

Corresponding author

Correspondence to Yan Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Wang, X., Zhu, K. et al. BACE1 in PV interneuron tunes hippocampal CA1 local circuits and resets priming of fear memory extinction. Mol Psychiatry 28, 4151–4162 (2023). https://doi.org/10.1038/s41380-023-02176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02176-y

Search

Quick links