Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigating the shared genetic architecture between schizophrenia and body mass index

Abstract

Evidence for reciprocal comorbidity of schizophrenia (SCZ) and body mass index (BMI) has grown in recent years. However, little is known regarding the shared genetic architecture or causality underlying the phenotypic association between SCZ and BMI. Leveraging summary statistics from the hitherto largest genome-wide association study (GWAS) on each trait, we investigated the genetic overlap and causal associations of SCZ with BMI. Our study demonstrated a genetic correlation between SCZ and BMI, and the correlation was more evident in local genomic regions. The cross-trait meta-analysis identified 27 significant SNPs shared between SCZ and BMI, most of which had the same direction of influence on both diseases. Mendelian randomization analysis showed the causal association of SCZ with BMI, but not vice versa. Combining the gene expression information, we found that the genetic correlation between SCZ and BMI is enriched in six regions of brain, led by the brain frontal cortex. Additionally, 34 functional genes and 18 specific cell types were found to have an impact on both SCZ and BMI within these regions. Taken together, our comprehensive genome-wide cross-trait analysis suggests a shared genetic basis including pleiotropic loci, tissue enrichment, and shared function genes between SCZ and BMI. This work provides novel insights into the intrinsic genetic overlap of SCZ and BMI, and highlights new opportunities and avenues for future investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of results of shared genetic architecture between SCZ and BMI.
Fig. 2: Local genetic correlation between SCZ and BMI.
Fig. 3: Partitioned genetic correlation between SCZ and BMI.
Fig. 4: Bi-directional Mendelian Randomization (MR) analyses between SCZ and BMI.
Fig. 5: Tissue specific enrichment of SNP heritability for SCZ and BMI.
Fig. 6: Overlap of significant genes associated with both SCZ and BMI in SMR in enriched tissues.

Similar content being viewed by others

Code availability

LDSC, Partition heritability: https://github.com/bulik/ldsc; ρ-HESS: https://huwenboshi.github.io/hess/local_rhog/; MTAG: https://github.com/JonJala/mtag; CPASSOC: https://github.com/futurologist/UKB_phenotypes_and_scripts/; Colocalization: https://github.com/chr1swallace/coloc/; PLINK: https://www.cog-genomics.org/plink/1.9; TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/; Multi-tissue enrichment: https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses/; SMR: https://cnsgenomics.com/software/smr/; MAGMA: https://ctg.cncr.nl/software/magma/; FUMA: https://fuma.ctglab.nl/celltype/.

References

  1. Fleischhacker WW, Arango C, Arteel P, Barnes TR, Carpenter W, Duckworth K, et al. Schizophrenia-time to commit to policy change. Schizophr Bull. 2014;40:S165–S94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cirulli ET, Guo L, Leon Swisher C, Shah N, Huang L, Napier LA, et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 2019;29:488–500.e482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manu P, Dima L, Shulman M, Vancampfort D, De Hert M, Correll CU. Weight gain and obesity in schizophrenia: epidemiology, pathobiology, and management. Acta Psychiatr Scand. 2015;132:97–108.

    Article  CAS  PubMed  Google Scholar 

  4. Hall LS, Medway CW, Pain O, Pardiñas AF, Rees EG, Escott-Price V, et al. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Hum Mol Genet. 2020;29:159–67.

    Article  CAS  PubMed  Google Scholar 

  5. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49:1458–67.

    Article  CAS  PubMed  Google Scholar 

  7. Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metab Clin Exp. 2019;92:37–50.

    Article  CAS  PubMed  Google Scholar 

  8. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gazal S, Finucane HK, Furlotte NA, Loh PR, Palamara PF, Liu X, et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat Genet. 2017;49:1421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheerin CM, Bountress KE, Meyers JL, Saenz de Viteri SS, Shen H, Maihofer AX, et al. Shared molecular genetic risk of alcohol dependence and posttraumatic stress disorder (PTSD). Psychol Addict Behav. 2020;34:613–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shi H, Mancuso N, Spendlove S, Pasaniuc B. Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am J Hum Genet. 2017;101:737–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okamura K, Kawai T, Hata K, Nakabayashi K. Lists of HumanMethylation450 BeadChip probes with nucleotide-variant information obtained from the Phase 3 data of the 1000 Genomes Project. Genom Data. 2016;7:67–69.

    Article  PubMed  Google Scholar 

  15. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu Z, Hasegawa K, Camargo CA Jr., Liang L. Investigating asthma heterogeneity through shared and distinct genetics: Insights from genome-wide cross-trait analysis. J Allergy Clin Immunol. 2021;147:796–807.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genom. 2021;22:57.

    Article  CAS  Google Scholar 

  18. Yang Y, Musco H, Simpson-Yap S, Zhu Z, Wang Y, Lin X, et al. Investigating the shared genetic architecture between multiple sclerosis and inflammatory bowel diseases. Nat Commun. 2021;12:5641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peng H, Wang S, Wang M, Ye Y, Xue E, Chen X, et al. Nonalcoholic fatty liver disease and cardiovascular diseases: a Mendelian randomization study. Metab Clin Exp. 2022;133:155220.

    Article  CAS  PubMed  Google Scholar 

  22. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Taylor-Bateman V, Gill D, Georgakis M, Malik R, Munroe P, Traylor M. Cardiovascular risk factors and MRI markers of cerebral small vessel disease: a Mendelian randomization study. Neurology. 2022;98:e343.

  24. Bowden J, Davey, Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet. 2018;50:621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krishnamoorthy S, Li GH, Cheung CL. Transcriptome-wide summary data-based Mendelian randomization analysis reveals 38 novel genes associated with severe COVID-19. J Med Virol. 2023;95:e28162.

  29. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Watanabe K, Umićević Mirkov M, de Leeuw CA, van den Heuvel MP, Posthuma D. Genetic mapping of cell type specificity for complex traits. Nat Commun. 2019;10:3222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.

    Article  PubMed  Google Scholar 

  33. Tian Y, Liu D, Wang D, Wang J, Xu H, Dai Q, et al. Obesity in Chinese patients with chronic schizophrenia: prevalence, clinical correlates and relationship with cognitive deficits. Schizophr Res. 2020;215:270–6.

    Article  PubMed  Google Scholar 

  34. Someya Y, Tamura Y, Kaga H, Sugimoto D, Kadowaki S, Suzuki R, et al. Sarcopenic obesity is associated with cognitive impairment in community-dwelling older adults: the Bunkyo Health Study. Clin Nutr. 2022;41:1046–51.

    Article  PubMed  Google Scholar 

  35. Milani SA, Lopez DS, Downer B, Samper-Ternent R, Wong R. Effects of diabetes and obesity on cognitive impairment and mortality in older mexicans. Arch Gerontol Geriatr. 2022;99:104581.

  36. Chen AY, Kim SE, Houtrow AJ, Newacheck PW. Prevalence of obesity among children with chronic conditions. Obesity. 2010;18:210–3.

    Article  PubMed  Google Scholar 

  37. Boeka AG, Lokken KL. Neuropsychological performance of a clinical sample of extremely obese individuals. Arch Clin Neuropsychol. 2008;23:467–74.

    Article  PubMed  Google Scholar 

  38. Smith E, Singh R, Lee J, Colucci L, Graff-Guerrero A, Remington G, et al. Adiposity in schizophrenia: a systematic review and meta-analysis. Acta Psychiatr Scand. 2021;144:524–36.

    Article  PubMed  Google Scholar 

  39. McWhinney SR, Brosch K, Calhoun VD, Crespo-Facorro B, Crossley NA, Dannlowski U, et al. Obesity and brain structure in schizophrenia—ENIGMA study in 3021 individuals. Mol Psychiatry. 2022;27:3731–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J, et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature. 2010;463:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C, et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA. 2010;107:10584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Cantley J, Burchfield JG, Meoli CC, Stöckli J, Whitworth PT, et al. DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia. 2014;57:2173–82.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang R, Valenzuela RK, Lu S, Meng L, Guo T, Du X, et al. Is the conserved mammalian region of ZNF804A locus associated with schizophrenia? A population-based genetics analysis. Schizophr Res. 2011;133:159–64.

    Article  PubMed  Google Scholar 

  44. Duarte RRR, Troakes C, Nolan M, Srivastava DP, Murray RM, Bray NJ. Genome-wide significant schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of BORCS7, AS3MT, and NT5C2 in the human brain. Am J Med Genet B Neuropsychiatr Genet. 2016;171:806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johanns M, Kviklyte S, Chuang SJ, Corbeels K, Jacobs R, Herinckx G, et al. Genetic deletion of soluble 5′-nucleotidase II reduces body weight gain and insulin resistance induced by a high-fat diet. Mol Genet Metab. 2019;126:377–87.

    Article  CAS  PubMed  Google Scholar 

  46. Ghersi E, Vito P, Lopez P, Abdallah M, D’Adamio L. The intracellular localization of amyloid beta protein precursor (AbetaPP) intracellular domain associated protein-1 (AIDA-1) is regulated by AbetaPP and alternative splicing. J Alzheimers Dis. 2004;6:67–78.

    Article  CAS  PubMed  Google Scholar 

  47. Tindi JO, Chávez AE, Cvejic S, Calvo-Ochoa E, Castillo PE, Jordan BA. ANKS1B gene product AIDA-1 controls hippocampal synaptic transmission by regulating GluN2B subunit localization. J Neurosci. 2015;35:8986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costa-Urrutia P, Colistro V, Jiménez-Osorio AS, Cárdenas-Hernández H, Solares-Tlapechco J, Ramirez-Alcántara M et al. Genome-wide association study of Body Mass Index and body fat in Mexican-Mestizo children. Genes. 2019;10:945.

  49. Peters T, Nüllig L, Antel J, Naaresh R, Laabs BH, Tegeler L, et al. The role of genetic variation of BMI, body composition, and fat distribution for mental traits and disorders: a look-up and Mendelian randomization study. Front Genet. 2020;11:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hartwig FP, Bowden J, Loret de Mola C, Tovo-Rodrigues L, Davey Smith G, Horta BL. Body mass index and psychiatric disorders: a Mendelian randomization study. Sci Rep. 2016;6:32730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hübel C, Gaspar HA, Coleman JRI, Hanscombe KB, Purves K, Prokopenko I, et al. Genetic correlations of psychiatric traits with body composition and glycemic traits are sex- and age-dependent. Nat Commun. 2019;10:5765.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, et al. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med. 2019;25:1390–5.

    Article  CAS  PubMed  Google Scholar 

  53. Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z, et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature. 2011;478:97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lowe CJ, Reichelt AC, Hall PA. The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn Sci. 2019;23:349–61.

    Article  PubMed  Google Scholar 

  55. Willette AA, Kapogiannis D. Does the brain shrink as the waist expands? Ageing Res Rev. 2015;20:86–97.

    Article  PubMed  Google Scholar 

  56. Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur heart J. 2019;40:2290–2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrology JASN. 2004;15:2792–2800.

    Article  CAS  Google Scholar 

  58. Hajek T, Calkin C, Blagdon R, Slaney C, Uher R, Alda M. Insulin resistance, diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology. 2014;39:2910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N, Lefebvre, et al. Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. J Neuroinflammation. 2016;13:67.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goldstein BI, Baune BT, Bond DJ, Chen PH, Eyler L, Fagiolini A, et al. Call to action regarding the vascular-bipolar link: A report from the Vascular Task Force of the International Society for Bipolar Disorders. Bipolar Disord. 2020;22:440–60.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Van Gaal LF, Mertens IL, De, Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    Article  PubMed  Google Scholar 

  62. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74:261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Suvisaari J, Keinänen J, Eskelinen S, Mantere O. Diabetes and schizophrenia. Curr Diabetes Rep. 2016;16:16.

    Article  Google Scholar 

  64. Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, et al. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry. 2020;25:761–75.

    Article  CAS  PubMed  Google Scholar 

  65. Jabri MA, Rtibi K, Sebai H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr Neurosci. 2022;25:1350–61.

    Article  CAS  PubMed  Google Scholar 

  66. Wahid RM, Samy W, El-Sayed SF. Cognitive impairment in obese rat model: role of glial cells. Int J Obes. 2021;45:2191–6.

    Article  CAS  Google Scholar 

  67. Vong L, Ye C, Yang Z, Choi B, Chua S Jr., Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron. 2011;71:142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharm Ther. 2020;205:107426.

    Article  CAS  Google Scholar 

  69. Ohi K, Shimada T, Yasuyama T, Uehara T, Kawasaki Y. Variability of 128 schizophrenia-associated gene variants across distinct ethnic populations. Transl Psychiatry. 2017;7:e988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all investigators who shared genome-wide summary statistics. This work was supported by the National Natural Science Foundation of China (82170870 and 82120108008), Shanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine (YBKA201909), Shanghai Municipal Human Resources and Social Security Bureau (2020074), Clinical Research Plan of Shanghai Hospital Development Center (SHDC2020CR4006), and Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20212501). The funders played no role in the design or conduction of the study; in the collection, management, analysis, or interpretation of the data; or in the preparation, review, or approval of the article.

Author information

Authors and Affiliations

Authors

Contributions

BW and NW contributed to the concept and design. YL contributed technical and material support. YY, YF, YY wrote the manuscript, researched data, and reviewed/edited the manuscript. All authors contributed to data acquisition and reviewed/edited the manuscript. BW, NW, and YL revised it critically for important intellectual content. All authors approved the final version of the article for submission.

Corresponding authors

Correspondence to Bin Wang, Ningjian Wang or Yingli Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Fu, Y., Yu, Y. et al. Investigating the shared genetic architecture between schizophrenia and body mass index. Mol Psychiatry 28, 2312–2319 (2023). https://doi.org/10.1038/s41380-023-02104-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02104-0

Search

Quick links