Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

iPSC toolbox for understanding and repairing disrupted brain circuits in autism

Abstract

Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: How ASD-associated connectivity deficits may arise during brain development.
Fig. 2: Application of iPSC-derived neurons and organoids to study connectivity deficits in ASD.

Similar content being viewed by others

References

  1. APA. Diagnostic and statistical manual of mental disorders. 5th ed. APA; 2013.

  2. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 Years - Autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018. 2018. https://doi.org/10.15585/mmwr.ss6706a1.

  3. Werling DM, Parikshak NN, Geschwind DH. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun. 2016;7:10717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hull L, Mandy W, Petrides KV. Behavioural and cognitive sex/gender differences in autism spectrum condition and typically developing males and females. Autism. 2017;21:706–27.

    Article  PubMed  Google Scholar 

  5. Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell‐derived neurons and organoids: an outlook into future diagnostics and drug development. Dev Dyn. 2020;249:6–33.

    Article  PubMed  Google Scholar 

  6. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci. 2004;24:9228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.

    Article  CAS  PubMed  Google Scholar 

  9. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17:103–11.

    Article  CAS  PubMed  Google Scholar 

  10. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fmri study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17:951–61.

    Article  PubMed  Google Scholar 

  11. Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;36:1292–313.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uddin LQ, Supekar K, Menon V. Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci. 2013;7:458.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di Martino A, O’Connor D, Chen B, Alaerts K, Anderson JS, Assaf M, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data. 2017;4:170010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Holiga Š, Hipp JF, Chatham CH, Garces P, Spooren W, D’Ardhuy XL, et al. Patients with autism spectrum disorders display reproducible functional connectivity alterations. Sci Transl Med. 2019;11:eaat9223.

    Article  PubMed  Google Scholar 

  15. Hanson KL, Lew CH, Hrvoj-Mihic B, Cuevas D, Greiner DMZ, Groeniger KM, et al. Decreased density of cholinergic interneurons in striatal territories in Williams syndrome. Brain Struct Funct. 2020;225:1019–32.

    Article  PubMed  Google Scholar 

  16. Hanson KL, Cuevas DL, Groeniger KM, Lew CH, Hrvoj-Mihic BL, Raghanti MA, et al. Decreased density of cholinergic interneurons in the medial caudate nucleus in humans with Williams Syndrome. FASEB J. 2018;225:1019–32.

    Google Scholar 

  17. Hashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex. 2017;27:1931–43.

    PubMed  Google Scholar 

  18. Lew CH, Brown C, Bellugi U, Semendeferi K. Neuron density is decreased in the prefrontal cortex in Williams syndrome. Autism Res. 2017;10:99–112.

    Article  PubMed  Google Scholar 

  19. Wegiel J, Flory M, Kaczmarski W, Brown WT, Chadman K, Wisniewski T, et al. Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol. 2017;76:225–37.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weir RK, Bauman MD, Jacobs B, Schumann CM. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains. J Comp Neurol. 2018;526:262–74.

    Article  CAS  PubMed  Google Scholar 

  22. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19:215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev Neurobiol. 2017;77:393–404.

    Article  PubMed  Google Scholar 

  24. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell genomics identifies cell type–specific molecular changes in autism. Science.2019;364:685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol. 2012;4:a009886–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16:551–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kline DD, Ogier M, Kunze DL, Katz DM. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci. 2010;30:5303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vicidomini C, Ponzoni L, Lim D, Schmeisser MJ, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689–702.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan ZF, Mao SS, Shen J, Jiang LH, Xu L, Xu JL, et al. Insulin-like growth factor-1 down-regulates the phosphorylation of FXYD1 and rescues behavioral deficits in a mouse model of rett syndrome. Front Neurosci. 2020;14:20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of fragile X syndrome in mice. Neuro. 2007;56:955–62.

    Google Scholar 

  31. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009;106:2029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erickson CA, Davenport MH, Schaefer TL, Wink LK, Pedapati EV, Sweeney JA, et al. Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodev Disord. 2017;9:7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. O'leary HM, Kaufmann WE, Barnes KV, Rakesh K, Kapur K, Tarquinio DC, et al. Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome. Ann Clin Transl Neurol. 2018;5:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeste SS, Geschwind DH. Clinical trials for neurodevelopmental disorders: at a therapeutic frontier. Sci Transl Med. 2016;8:1–4.

    Article  Google Scholar 

  35. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krienen FM, Goldman M, Zhang Q, C. H. del Rosario R, Florio M, Machold R, et al. Innovations in primate interneuron repertoire. Nature. 2019;586:262–9.

    Article  Google Scholar 

  37. Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6:777–88.

    Article  PubMed  Google Scholar 

  38. Shen T, Ji F, Yuan Z, Jiao J. CHD2 is required for embryonic neurogenesis in the developing cerebral cortex. Stem Cells. 2015;33:1794–806.

    Article  CAS  PubMed  Google Scholar 

  39. Casarosa S, Fode C, Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development. 1999;126:525–34.

    Article  CAS  PubMed  Google Scholar 

  40. Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science. 2017;358:1318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Fariñas I, Grosschedl R, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 2008;57:364–77.

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi Y, Miura M. Programmed cell death in neurodevelopment. Dev Cell. 2015;32:478–90.

    Article  CAS  PubMed  Google Scholar 

  43. Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S, Natsume T, et al. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat Cell Biol. 2009;11:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou X, Hollern D, Liao J, Andrechek E, Wang H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 2013;4:e560–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306:2001–10.

    Article  CAS  PubMed  Google Scholar 

  46. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–84.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry. 2012;169:589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pagnozzi AM, Conti E, Calderoni S, Fripp J, Rose SE. A systematic review of structural MRI biomarkers in autism spectrum disorder: a machine learning perspective. Int J Dev Neurosci. 2018;71:68–82.

    Article  PubMed  Google Scholar 

  49. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature. 1994;368:1988–91.

    Article  Google Scholar 

  50. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL, Peixoto R, et al. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B−/− mice. Nat Neurosci. 2016;19:716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peixoto RT, Chantranupong L, Hakim R, Levasseur J, Wang W, Merchant T, et al. Abnormal striatal development underlies the early onset of behavioral deficits in Shank3B−/− Mice. Cell Rep. 2019;29:2016–27.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pagani M, Bertero A, Liska A, Galbusera A, Sabbioni M, Barsotti N, et al. Deletion of autism risk gene shank3 disrupts prefrontal connectivity. J Neurosci. 2019;39:5299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature. 2019;570:326–31.

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ip JPK, Mellios N, Sur M. Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat Rev Neurosci. 2018;19:368–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chin EW, Marcy G, Yoon SI, Ma D, Rosales FJ, Augustine GJ, et al. Choline ameliorates disease phenotypes in human iPSC models of rett syndrome. NeuroMolecular Med. 2016;18:364–77.

    Article  CAS  PubMed  Google Scholar 

  58. Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci USA. 2011;108:14169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, et al. Global transcriptional and translational repression in human-embryonic- stem-cell-derived rett syndrome neurons. Cell Stem Cell. 2013;13:446–58.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Djuric U, Cheung AYL, Zhang W, Mok RS, Lai W, Piekna A, et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol Dis. 2015;76:37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trujillo CA, Adams JW, Negraes PD, Carromeu C, Tejwani L, Acab A, et al. Pharmacological reversal of synaptic and network pathology in human MECP2 ‐KO neurons and cortical organoids. EMBO Mol Med. 2021;13:e12523.

    Article  CAS  PubMed  Google Scholar 

  62. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell.2010;143:527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol. 2012;2:186–201.

    Article  CAS  PubMed  Google Scholar 

  64. Harony-Nicolas H, De Rubeis S, Kolevzon A, Buxbaum JD. Phelan McDermid syndrome: from genetic discoveries to animal models and treatment. J Child Neurol. 2015;30:1861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mitz AR, Philyaw TJ, Boccuto L, Shcheglovitov A, Sarasua SM, Kaufmann WE, et al. Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. Eur J Hum Genet. 2018;26:293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503:267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kathuria A, Nowosiad P, Jagasia R, Aigner S, Taylor RD, Andreae LC, et al. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol Psychiatry. 2018;23:735–46.

    Article  CAS  PubMed  Google Scholar 

  69. Gouder L, Vitrac A, Goubran-Botros H, Danckaert A, Tinevez JY, André-Leroux G, et al. Altered spinogenesis in iPSC-derived cortical neurons from patients with autism carrying de novo SHANK3 mutations. Sci Rep. 2019;9:94.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;2669:1–22.

    Google Scholar 

  71. Ranke MB, Wölfle J, Schnabel D, Bettendorf M. Treatment of dwarfism with recombinant human insulin-like growth factor-1. Dtsch Arztebl Int. 2009;106:703–9.

    PubMed  PubMed Central  Google Scholar 

  72. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.

    Article  CAS  PubMed  Google Scholar 

  73. Krey JF, Paşca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16:201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paşca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca AM, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17:1657–62.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bagni C, Tassone F, Neri G, Hagerman R. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest. 2012;122:4314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65:905–14.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Z, Marro SG, Zhang Y, Arendt KL, Patzke C, Zhou B, et al. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Sci Transl Med. 2018;10:eaar4338.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Doers ME, Musser MT, Nichol R, Berndt ER, Baker M, Gomez TM, et al. IPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev. 2014;23:1777–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Telias M, Kuznitsov-Yanovsky L, Sega M, Ben-Yosef D. Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J Neurosci. 2015;35:15295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tien NW, Kerschensteiner D. Homeostatic plasticity in neural development. Neural Dev. 2018;13:1–7.

    Article  Google Scholar 

  81. Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron. 2013;77:440–56.

    Article  CAS  PubMed  Google Scholar 

  82. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3:519–32.

    Article  CAS  PubMed  Google Scholar 

  83. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:12770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  PubMed  Google Scholar 

  85. Espuny-Camacho I, Michelsen KA, Linaro D, Bilheu A, Acosta-Verdugo S, Herpoel A, et al. Human pluripotent stem-cell-derived cortical neurons integrate functionally into the lesioned adult murine visual cortex in an area-specific way. Cell Rep. 2018;23:2732–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Linaro D, Vermaercke B, Iwata R, Ramaswamy A, Libé-Philippot B, Boubakar L, et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron. 2019;104:972–86.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barker RA, Parmar M, Studer L, Takahashi J. Human trials of stem cell-derived dopamine neurons for parkinson’s disease: dawn of a new era. Cell Stem Cell. 2017;21:569–73.

    Article  CAS  PubMed  Google Scholar 

  88. Kwak KA, Lee SP, Yang JY, Park YS. Current perspectives regarding stem cell-based therapy for Alzheimer’s disease. Stem Cells Int. 2018;2018:6392986–14.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tornero D, Wattananit S, Grønning Madsen M, Koch P, Wood J, Tatarishvili J, et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain. 2013;136:3561–77.

    Article  PubMed  Google Scholar 

  90. Cunningham M, Cho JH, Leung A, Savvidis G, Ahn S, Moon M, et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15:559–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, et al. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol. 2013;11:e1001738.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Real R, Peter M, Trabalza A, Khan S, Smith MA, Dopp J, et al. In vivo modeling of human neuron dynamics and down syndrome. Science. 2018;362:eaau1810.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chiola S, Napan K, Wang Y, Lazarenko R, Armstrong CJ, Cui J, et al. Defective AMPA-mediated synaptic transmission and morphology in human neurons with hemizygous SHANK3 deletion engrafted in mouse prefrontal cortex. Mol Psychiatry. 2021;Online.

  94. Xu SY, Lu FM, Wang MY, Hu ZS, Zhang J, Chen ZY, et al. Altered functional connectivity in the motor and prefrontal cortex for children with down’s syndrome: an fNIRS study. Front Hum Neurosci. 2020;14:1–10.

    Article  Google Scholar 

  95. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. Proc Natl Acad Sci. 2013;110:20284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12:671–8.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to Combat Zika virus infection. Cell Rep. 2017;21:517–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165:1238–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Trevino AE, Sinnott-Armstrong N, Andersen J, Yoon SJ, Huber N, Pritchard JK, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367:eaay1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 2017;95:779–90.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gordon A, Yoon SJ, Tran SS, Makinson CD, Park JY, Andersen J, et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci. 2021;24:331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L, Sit T, et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 2019;25:558–69.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;21:383–98.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim KY, Sun P, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 2019;24:487–97.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miura Y, Li MY, Birey F, Ikeda K, Revah O, Thete MV, et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat Biotechnol. 2020;38:1421–30.

    Article  CAS  PubMed  Google Scholar 

  110. Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, et al. Generation of functional human 3D cortico-motor assembloids. Cell. 2020;183:1913–29.e26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Samarasinghe RA, Miranda OA, Mitchell S, Ferando I, Watanabe M, Buth JE, et al. Identification of neural oscillations and epileptiform changes in human brain organoids. BioRxiv. 2021:https://doi.org/10.1101/820183.

  112. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162:375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, et al. Modeling autism-associated SHANK3 deficiency using human cortico-striatal organoids generated from single neural rosettes. Cold Spring Harbor Laboratory; 2021: https://doi.org/10.1101/2021.01.25.428022.

  114. Sun AX, Yuan Q, Fukuda M, Yu W, Yan H, Lim GGY, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Negraes PD, Trujillo CA, Yu N-K, Wu W, Yao H, Liang N, et al. Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Mol Psychiatry. 2021;Online.

  116. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36:432–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nehme R, Barrett LE. Using human pluripotent stem cell models to study autism in the era of big data. Mol Autism. 2020;11:1–14.

    Article  Google Scholar 

  118. Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernández IA, Marchetto MC, et al. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron. 2014;83:69–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Frega M, van Gestel SHC, Linda K, van der Raadt J, Keller J, Van Rhijn J-R, et al. Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. J Vis Exp. 2017;119:54900.

    Google Scholar 

  120. Qi Y, Zhang X-J, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 2016;19:248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nehme R, Zuccaro E, Ghosh SD, Li C, Sherwood JL, Pietilainen O, et al. Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep. 2018;23:2509–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schafer ST, Paquola ACM, Stern S, Gosselin D, Ku M, Pena M, et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci. 2019;22:243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zaslavsky K, Zhang WB, McCready FP, Rodrigues DC, Deneault E, Loo C, et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat Neurosci. 2019;22:556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ladewig J, Koch P, Brüstle O. Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nat Neurosci. 2014;17:24–6.

    Article  CAS  PubMed  Google Scholar 

  127. Elkabetz Y, Studer L. Human ESC-derived neural rosettes and neural stem cell progression. Cold Spring Harb Symp Quant Biol. 2008;73:377–87.

    Article  CAS  PubMed  Google Scholar 

  128. Yoon SJ, Elahi LS, Pașca AM, Marton RM, Gordon A, Revah O, et al. Reliability of human cortical organoid generation. Nat Methods. 2019;16:75–8.

    Article  CAS  PubMed  Google Scholar 

  129. Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature. 2020;578:142–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Farahany NA, Greely HT, Hyman S, Koch C, Grady C, Pașca SP, et al. The ethics of experimenting with human brain tissue comment. Nature. 2018;556:429–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sawai T, Sakaguchi H, Thomas E, Takahashi J, Fujita M. The ethics of cerebral organoid research: being conscious of consciousness. Stem Cell Rep. 2019;13:440–7.

    Article  Google Scholar 

  132. Lovell-Badge R. Stem-cell guidelines: why it was time for an update. Nature. 2021;593:479–79.

    Article  CAS  PubMed  Google Scholar 

  133. Lavazza A, Massimini M. Cerebral organoids: ethical issues and consciousness assessment. J Med Ethics. 2018;44:606–10.

    Article  PubMed  Google Scholar 

  134. Johnson MD, Lim HH, Netoff TI, Connolly AT, Johnson N, Roy A, et al. Neuromodulation for brain disorders: challenges and opportunities. IEEE Trans Biomed Eng. 2013;60:610–24.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bourdillon P, Hermann B, Sitt JD, Naccache L. Electromagnetic brain stimulation in patients with disorders of consciousness. Front Neurosci. 2019;13:1–14.

    Article  Google Scholar 

  136. Fang JY, Tolleson C. The role of deep brain stimulation in parkinson’s disease: an overview and update on new developments. Neuropsychiatr Dis Treat. 2017;13:723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chang AD, Berges VA, Chung SJ, Fridman GY, Baraban JM, Reti IM. High-frequency stimulation at the subthalamic nucleus suppresses excessive self-grooming in autism-like mouse models. Neuropsychopharmacology. 2016;41:1813–21.

    Article  CAS  PubMed  Google Scholar 

  138. Bariselli S, Tzanoulinou S, Glangetas C, Prévost-Solié C, Pucci L, Viguié J, et al. SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci. 2016;19:926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Donegan JJ, Boley AM, Lodge DJ. Embryonic stem cell transplants as a therapeutic strategy in a rodent model of autism. Neuropsychopharmacology. 2018;43:1789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tyson JA, Anderson SA. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci. 2014;37:169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Southwell DG, Seifikar H, Malik R, Lavi K, Vogt D, Rubenstein JL, et al. Interneuron transplantation rescues social behavior deficits without restoring wild-type physiology in a mouse model of autism with excessive synaptic inhibition. J Neurosci. 2020;40:2215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Disco. 2019;18:358–78.

    Article  CAS  Google Scholar 

  143. Xu X, Qi LS. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. 2018;431:34–47.

    Article  PubMed  Google Scholar 

  144. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Disco. 2020;19:673–94.

    Article  CAS  Google Scholar 

  145. Gadalla KK, Bailey ME, Spike RC, Ross PD, Woodard KT, Kalburgi SN, et al. Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol Ther. 2013;21:18–30.

    Article  CAS  PubMed  Google Scholar 

  146. Garg SK, Lioy DT, Cheval H, McGann JC, Bissonnette JM, Murtha MJ, et al. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci. 2013;33:13612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tillotson R, Selfridge J, Koerner MV, Gadalla KKE, Guy J, De Sousa D, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature. 2017;550:398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hampson DR, Hooper AWM, Niibori Y. The application of adeno-associated viral vector gene therapy to the treatment of fragile X syndrome. Brain Sci. 2019;9:1–15.

    Article  Google Scholar 

  149. Colasante G, Lignani G, Brusco S, Di Berardino C, Carpenter J, Giannelli S, et al. dCas9-Based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in dravet syndrome mice. Mol Ther. 2020;28:235–53.

    Article  CAS  PubMed  Google Scholar 

  150. Bailus BJ, Pyles B, Mcalister MM, O'geen H, Lockwood SH, Adams AN, et al. Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an angelman syndrome mouse brain. Mol Ther. 2016;24:548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the paper.

Corresponding author

Correspondence to Aleksandr Shcheglovitov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiola, S., Edgar, N.U. & Shcheglovitov, A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 27, 249–258 (2022). https://doi.org/10.1038/s41380-021-01288-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01288-7

Search

Quick links