Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural correlates of visuospatial processing in migraine: does the pain network help?

Abstract

Migraine patients frequently report cognitive symptoms during the different phases of migraine. The most affected cognitive domains are visuospatial abilities, processing speed, attention and executive functions. We explored migraine patients’ performance during a visuospatial task and investigated the activity of brain areas involved in visuospatial processing. A functional magnetic resonance imaging (MRI) visuospatial task, including an angle and a colour discrimination paradigm, was administrated to 17 headache-free migraine patients and 16 controls. Correlations between functional MRI abnormalities and subjects’ performance, clinical and neuropsychological variables were also investigated. Deficits at visuospatial cognitive tests were present in around 20% of patients. Migraine patients maintained a preserved behavioural performance (reaction time and number of correct responses) during the angle discrimination task, while they performed less correctly in the colour task compared to controls (p = 0.05).

The comparison of angle vs. colour task revealed an increased activity of the right insula, bilateral orbitofrontal cortex and medial frontal gyrus, and decreased activity of the bilateral posterior cingulate cortex in migraine patients compared to controls. In migraine patients, a better performance in the angle task was associated with higher activation of the right insula and orbitofrontal cortex, as well as with decreased activation of the right posterior cingulate cortex. Our results suggest an adaptive functional plasticity that might help migraine patients to overcome impaired visuospatial skills and preserve an adequate performance during a visuospatial task. These compensatory mechanisms seem to take advantage of recruiting brain areas that are commonly involved also in nociception.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental task during fMRI.
Fig. 2: Visuospatial fMRI analysis.

References

  1. Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol. 2017;264:2031–9.

    Article  CAS  Google Scholar 

  2. Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol. 2018;14:699–710.

    Article  Google Scholar 

  3. Camarda C, Monastero R, Pipia C, Recca D, Camarda R. Interictal executive dysfunction in migraineurs without aura: relationship with duration and intensity of attacks. Cephalalgia. 2007;27:1094–100.

    Article  CAS  Google Scholar 

  4. Huang L, Juan Dong H, Wang X, Wang Y, Xiao Z. Duration and frequency of migraines affect cognitive function: evidence from neuropsychological tests and event-related potentials. J Headache Pain. 2017;18:54.

    Article  Google Scholar 

  5. Vuralli D, Ayata C, Bolay H. Cognitive dysfunction and migraine. J Headache Pain. 2018;19:109.

    Article  Google Scholar 

  6. Gaist D, Pedersen L, Madsen C, Tsiropoulos I, Bak S, Sindrup S, et al. Long-term effects of migraine on cognitive function: a population-based study of Danish twins. Neurology. 2005;64:600–7.

    Article  CAS  Google Scholar 

  7. Gil-Gouveia R, Oliveira AG, Martins IP. Assessment of cognitive dysfunction during migraine attacks: a systematic review. J Neurol. 2015;262:654–65.

    Article  Google Scholar 

  8. Messina R, Rocca MA, Colombo B, Valsasina P, Meani A, Falini A, et al. Dysregulation of multisensory processing stands out from an early stage of migraine: a study in pediatric patients. J Neurol. 2020;267:760–9.

    Article  Google Scholar 

  9. Chong CD, Schwedt TJ, Hougaard A. Brain functional connectivity in headache disorders: a narrative review of MRI investigations. J Cereb Blood Flow Metab. 2017:271678X17740794.

  10. Schmitz N, Arkink EB, Mulder M, Rubia K, Admiraal-Behloul F, Schoonman GG, et al. Frontal lobe structure and executive function in migraine patients. Neurosci Lett. 2008;440:92–6.

    Article  CAS  Google Scholar 

  11. Karsan N, Bose PR, O’Daly O, Zelaya FO, Goadsby PJ. Alterations in functional connectivity during different phases of the triggered migraine attack. Headache. 2020;60:1244–58.

  12. Messina R, Rocca MA, Colombo B, Valsasina P, Horsfield MA, Copetti M, et al. Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology. 2013;268:170–80.

    Article  Google Scholar 

  13. Puledda F, Ffytche D, O’Daly O, Goadsby PJ. Imaging the Visual Network in the Migraine Spectrum. Front Neurol. 2019;10:1325.

    Article  Google Scholar 

  14. Baschi R, Monastero R, Cosentino G, Costa V, Giglia G, Fierro B, et al. Visuospatial learning is fostered in migraine: evidence by a neuropsychological study. Neurol Sci. 2019;40:2343–8.

    Article  Google Scholar 

  15. Headache Classification Committee of the International Headache S. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808.

    Article  Google Scholar 

  16. Lines CR, Vandormael K, Malbecq W. A comparison of visual analog scale and categorical ratings of headache pain in a randomized controlled clinical trial with migraine patients. Pain. 2001;93:185–90.

    Article  Google Scholar 

  17. Stewart WF, Lipton RB, Dowson AJ, Sawyer J. Development and testing of the Migraine Disability Assessment (MIDAS) Questionnaire to assess headache-related disability. Neurology. 2001;56:S20–8. 6 Suppl 1

    Article  CAS  Google Scholar 

  18. Kosinski M, Bayliss MS, Bjorner JB, Ware JE Jr., Garber WH, Batenhorst A, et al. A six-item short-form survey for measuring headache impact: the HIT-6. Qual Life Res. 2003;12:963–74.

    Article  CAS  Google Scholar 

  19. Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1:2277–81.

    Article  CAS  Google Scholar 

  20. Orsini A, Pezzuti, L WAIS-IV. Contributo alla taratura italiana. Firenze: Giunti O.S; 2013.

  21. Wechsler D. WAIS−IV: Wechsler Adult Intelligence Scale. San Antonio, TX: Pearson; 2008.

  22. Heaton. Wisconsin Card Sorting Test (Manual). Odessa, FL: Psychological Assessment Resources, Inc, 1981.

  23. Ferracuti F, Benton AL. Tests di giudizio di orientamento di linee-Manuale. Firenze: SF, editor. Versione italiana. Organizzazioni Speciali O.S.; 1992.

  24. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci. 2002;22:443–7.

    Article  CAS  Google Scholar 

  25. Spinnler H, Tognoni G. Standardizzazione e Taratura Italiana di Test Neuropsicologici. Milano: Masson; 1987.

  26. Hamilton M. A rating scale for depression. J Neurol, Neurosurg, Psychiatry. 1960;23:56–62.

    Article  CAS  Google Scholar 

  27. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1959;32:50–5.

    Article  CAS  Google Scholar 

  28. Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, et al. Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex. 2007;17:2841–52.

    Article  Google Scholar 

  29. May A. Pearls and pitfalls: neuroimaging in headache. Cephalalgia. 2013;33:554–65.

    Article  Google Scholar 

  30. Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S, et al. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage. 2007;34:137–43.

    Article  Google Scholar 

  31. Ungerleider LG, Haxby JV. ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol. 1994;4:157–65.

    Article  CAS  Google Scholar 

  32. Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, et al. At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp. 2009;30:2530–41.

    Article  Google Scholar 

  33. Pedale T, Macaluso E, Santangelo V. Enhanced insular/prefrontal connectivity when resisting from emotional distraction during visual search. Brain Struct Funct. 2019;224:2009–26.

    Article  Google Scholar 

  34. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    Article  CAS  Google Scholar 

  35. Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci. 2008;9:856–69.

    Article  CAS  Google Scholar 

  36. Reynolds NC, Zhong JY, Clendinen CA, Moffat SD, Magnusson KR. Age-related differences in brain activations during spatial memory formation in a well-learned virtual Morris water maze (vMWM) task. Neuroimage. 2019;202:116069.

    Article  Google Scholar 

  37. Burks JD, Conner AK, Bonney PA, Glenn CA, Baker CM, Boettcher LB, et al. Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg. 2018;128:1865–72.

    Article  Google Scholar 

  38. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82.

    Article  CAS  Google Scholar 

  39. Singh KD, Fawcett IP. Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage. 2008;41:100–12.

    Article  CAS  Google Scholar 

  40. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137:12–32. Pt 1

    Article  Google Scholar 

  41. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–91.

    Article  CAS  Google Scholar 

  42. Messina R, Filippi M, Goadsby PJ. Recent advances in headache neuroimaging. Curr Opin Neurol. 2018;31:379–85.

    Article  Google Scholar 

  43. Coppola G, Di Renzo A, Tinelli E, Di Lorenzo C, Scapeccia M, Parisi V, et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia. 2017:333102417715230.

  44. Shepherd AJ. Colour vision in migraine: selective deficits for S-cone discriminations. Cephalalgia. 2005;25:412–23.

    Article  CAS  Google Scholar 

  45. Shepherd AJ. Color vision but not visual attention is altered in migraine. Headache. 2006;46:611–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Rocca.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, R., Meani, A., Riccitelli, G.C. et al. Neural correlates of visuospatial processing in migraine: does the pain network help?. Mol Psychiatry 26, 6599–6608 (2021). https://doi.org/10.1038/s41380-021-01085-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01085-2

This article is cited by

Search

Quick links