Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peer victimization and its impact on adolescent brain development and psychopathology

Abstract

Chronic peer victimization has long-term impacts on mental health; however, the biological mediators of this adverse relationship are unknown. We sought to determine whether adolescent brain development is involved in mediating the effect of peer victimization on psychopathology. We included participants (n = 682) from the longitudinal IMAGEN study with both peer victimization and neuroimaging data. Latent profile analysis identified groups of adolescents with different experiential patterns of victimization. We then associated the victimization trajectories and brain volume changes with depression, generalized anxiety, and hyperactivity symptoms at age 19. Repeated measures ANOVA revealed time-by-victimization interactions on left putamen volume (F = 4.38, p = 0.037). Changes in left putamen volume were negatively associated with generalized anxiety (t = −2.32, p = 0.020). Notably, peer victimization was indirectly associated with generalized anxiety via decreases in putamen volume (95% CI = 0.004–0.109). This was also true for the left caudate (95% CI = 0.002–0.099). These data suggest that the experience of chronic peer victimization during adolescence might induce psychopathology-relevant deviations from normative brain development. Early peer victimization interventions could prevent such pathological changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fuhrmann D, Knoll LJ, Blakemore SJ. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015;19:558–66.

    PubMed  Google Scholar 

  2. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Juvonen JGS. Peer harassment in school: the plight of the vulnerable and victimized. Guilford Press; 2001.

  4. Hunter SC, Boyle JM, Warden D. Perceptions and correlates of peer-victimization and bullying. Br J Educ Psychol. 2007;77(Pt 4):797–810.

    PubMed  Google Scholar 

  5. Sumter SR, Baumgartner SE, Valkenburg PM, Peter J. Developmental trajectories of peer victimization: off-line and online experiences during adolescence. J Adolesc Health. 2012;50:607–13.

    PubMed  Google Scholar 

  6. Pellegrini A, Long J. A longitudinal study of bullying, dominances, and victimization during the transition from primary school through secondary school. Br J Dev Psychol. 2002;20:259–80.

    Google Scholar 

  7. Barker ED, Arseneault L, Brendgen M, Fontaine N, Maughan B. Joint development of bullying and victimization in adolescence: relations to delinquency and self-harm. J Am Acad Child Adolesc Psychiatry. 2008;47:1030–8.

    PubMed  Google Scholar 

  8. Sourander A, Helstela L, Helenius H, Piha J. Persistence of bullying from childhood to adolescence--a longitudinal 8-year follow-up study. Child Abus Negl. 2000;24:873–81.

    CAS  Google Scholar 

  9. Takizawa R, Maughan B, Arseneault L. Adult health outcomes of childhood bullying victimization: evidence from a five-decade longitudinal British birth cohort. Am J Psychiatry. 2014;171:777–84.

    PubMed  Google Scholar 

  10. Arseneault L, Bowes L, Shakoor S. Bullying victimization in youths and mental health problems: ‘much ado about nothing’? Psychol Med. 2010;40:717–29.

    CAS  PubMed  Google Scholar 

  11. Gladstone GL, Parker GB, Malhi GS. Do bullied children become anxious and depressed adults? A cross-sectional investigation of the correlates of bullying and anxious depression. J Nerv Ment Dis. 2006;194:201–8.

    PubMed  Google Scholar 

  12. Stapinski LA, Bowes L, Wolke D, Pearson RM, Mahedy L, Button KS, et al. Peer victimization during adolescence and risk for anxiety disorders in adulthood: a prospective cohort study. Depress Anxiety. 2014;31:574–82.

    PubMed  PubMed Central  Google Scholar 

  13. Lereya ST, Copeland WE, Costello EJ, Wolke D. Adult mental health consequences of peer bullying and maltreatment in childhood: two cohorts in two countries. Lancet Psychiatry. 2015;2:524–31.

    PubMed  PubMed Central  Google Scholar 

  14. Evans-Lacko S, Takizawa R, Brimblecombe N, King D, Knapp M, Maughan B, et al. Childhood bullying victimization is associated with use of mental health services over five decades: a longitudinal nationally representative cohort study. Psychol Med. 2017;47:127–35.

    CAS  PubMed  Google Scholar 

  15. Singham T, Viding E, Schoeler T, Arseneault L, Ronald A, Cecil CM, et al. Concurrent and longitudinal contribution of exposure to bullying in childhood to mental health: the role of vulnerability and resilience. JAMA Psychiatry. 2017;74:1112–9.

    PubMed  PubMed Central  Google Scholar 

  16. Schaefer J, Moffitt T, Arseneault L, Danese A, Fisher HL, Houts R, et al. Adolescent victimization and early-adult psychopathology: approaching causal inference using a longitudinal twin study to rule out noncausal explanations. Clin Psychol Sci. 2017. 2018 May; 6:352–371.

  17. van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P, et al. Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry. 2010;68:832–8.

    PubMed  Google Scholar 

  18. Teicher MH, Anderson CM, Polcari A. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Natl Acad Sci USA. 2012;109:E563–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim L, Radua J, Rubia K. Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry. 2014;171:854–63.

    PubMed  Google Scholar 

  20. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71:286–93.

    PubMed  Google Scholar 

  21. Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D, et al. Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry. 2006;59:975–82.

    PubMed  Google Scholar 

  22. Berking M, Wupperman P. Emotion regulation and mental health: recent findings, current challenges, and future directions. Curr Opin Psychiatry. 2012;25:128–34.

    PubMed  Google Scholar 

  23. Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ. Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci. 2004;1021:33–50.

    PubMed  Google Scholar 

  24. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    PubMed  Google Scholar 

  25. Andersen SL, Teicher MH. Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci. 2008;31:183–91.

    CAS  PubMed  Google Scholar 

  26. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101:8174–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C, et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry. 2010;15:1128–39.

    CAS  PubMed  Google Scholar 

  28. Olweus D. The revised Olweus Bully/Victim Questionnaire for students. Bergen, Norway: Res. Cent. Health Promot. (HEMIL), Univ. Bergen; 1996.

  29. Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The Development and Well-Being Assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry. 2000;41:645–55.

    CAS  PubMed  Google Scholar 

  30. Goodman A, Heiervang E, Collishaw S, Goodman R. The ‘DAWBA bands’ as an ordered-categorical measure of child mental health: description and validation in British and Norwegian samples. Soc Psychiatry Psychiatr Epidemiol. 2011;46:521–32.

    PubMed  Google Scholar 

  31. Goodman R. The Strengths and Difficulties Questionnaire: a research note. J Child Psychol Psychiatry. 1997;38:581–6.

    CAS  PubMed  Google Scholar 

  32. Bernstein DP, Ahluvalia T, Pogge D, Handelsman L. Validity of the Childhood Trauma Questionnaire in an adolescent psychiatric population. J Am Acad Child Adolesc Psychiatry. 1997;36:340–8.

    CAS  PubMed  Google Scholar 

  33. Newcomb MD, Huba GJ, Bentler PM. A multidimensional assessment of stressful life events among adolescents. J Health Soc Behav. 1981;22:400–15.

    Google Scholar 

  34. Quinlan EB, Cattrell A, Jia T, Artiges E, Banaschewski T, Barker G, et al. Psychosocial stress and brain function in adolescent psychopathology. Am J Psychiatry. 2017;174:785–94.

    PubMed  Google Scholar 

  35. Edmiston EE, Wang F, Mazure CM, Guiney J, Sinha R, Mayes LC, et al. Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Arch Pediatr Adolesc Med. 2011;165:1069–77.

    PubMed  PubMed Central  Google Scholar 

  36. Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:52.

    PubMed  PubMed Central  Google Scholar 

  37. Saleh A, Potter GG, McQuoid DR, Boyd B, Turner R, MacFall JR, et al. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med. 2017;47:171–81.

    CAS  PubMed  Google Scholar 

  38. Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH. Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav. 2013;7:196–203.

    PubMed  PubMed Central  Google Scholar 

  39. Price RB, Kuckertz JM, Siegle GJ, Ladouceur CD, Silk JS, Ryan ND, et al. Empirical recommendations for improving the stability of the dot-probe task in clinical research. Psychol Assess. 2015;27:365–76.

    PubMed  Google Scholar 

  40. Shete S, Beasley TM, Etzel CJ, Fernandez JR, Chen J, Allison DB, et al. Effect of winsorization on power and type 1 error of variance components and related methods of QTL detection. Behav Genet. 2004;34:153–9.

    PubMed  Google Scholar 

  41. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17:117–33.

    CAS  PubMed  Google Scholar 

  42. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.

    Google Scholar 

  43. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, et al. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage. 2007;36:1065–73.

    PubMed  Google Scholar 

  44. Teicher MH, Andersen SL, Hostetter JC Jr. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995;89:167–72.

    CAS  PubMed  Google Scholar 

  45. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci. 1999;2:859–61.

    CAS  PubMed  Google Scholar 

  46. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718–29.

    PubMed  Google Scholar 

  47. Liao M, Yang F, Zhang Y, He Z, Song M, Jiang T, et al. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS ONE. 2013;8:e71898.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. De Brito SA, Viding E, Sebastian CL, Kelly PA, Mechelli A, Maris H, et al. Reduced orbitofrontal and temporal grey matter in a community sample of maltreated children. J Child Psychol Psychiatry. 2013;54:105–12.

    PubMed  Google Scholar 

  49. Barker ED, Boivin M, Brendgen M, Fontaine N, Arseneault L, Vitaro F, et al. Predictive validity and early predictors of peer-victimization trajectories in preschool. Arch Gen Psychiatry. 2008;65:1185–92.

    PubMed  Google Scholar 

  50. Crick NR, Casas JF, Ku HC. Relational and physical forms of peer victimization in preschool. Dev Psychol. 1999;35:376–85.

    CAS  PubMed  Google Scholar 

  51. Sheppard CS, Giletta M, Prinstein MJ. Peer victimization trajectories at the adolescent transition: associations among chronic victimization, peer-reported status, and adjustment. J Clin Child Adolesc Psychol. 2016;1–10.

  52. Geoffroy MC, Boivin M, Arseneault L, Renaud J, Perret LC, Turecki G, et al. Childhood trajectories of peer victimization and prediction of mental health outcomes in midadolescence: a longitudinal population-based study. CMAJ. 2018;190:E37–43.

    PubMed  PubMed Central  Google Scholar 

  53. Ladd GW, Etteka I, Kochenderfer-Ladd B. Peer victimization trajectories from kindergarten through high school: differential pathways for children’s school engagement and achievement? J Educ Psychol. 2017;109:826–41.

    Google Scholar 

  54. Rosen LH, Beron KJ, Underwood MK. Social victimization trajectories from middle childhood through late adolescence. Soc Dev. 2017;26:227–47.

    PubMed  Google Scholar 

  55. Lago T, Davis A, Grillon C, Ernst M. Striatum on the anxiety map: small detours into adolescence. Brain Res. 2017;1654(Pt B):177–84.

  56. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.

    PubMed  PubMed Central  Google Scholar 

  57. Perez-Edgar K, Hardee JE, Guyer AE, Benson BE, Nelson EE, Gorodetsky E, et al. DRD4 and striatal modulation of the link between childhood behavioral inhibition and adolescent anxiety. Soc Cogn Affect Neurosci. 2014;9:445–53.

    PubMed  Google Scholar 

  58. Guyer AE, Choate VR, Detloff A, Benson B, Nelson EE, Perez-Edgar K, et al. Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. Am J Psychiatry. 2012;169:205–12.

    PubMed  PubMed Central  Google Scholar 

  59. Wang X, Li J, Yuan Y, Wang M, Ding J, Zhang J, et al. Altered putamen functional connectivity is associated with anxiety disorder in Parkinson’s disease. Oncotarget. 2017;8:81377–86.

    PubMed  PubMed Central  Google Scholar 

  60. Liu WJ, Yin DZ, Cheng WH, Fan MX, You MN, Men WW, et al. Abnormal functional connectivity of the amygdala-based network in resting-state FMRI in adolescents with generalized anxiety disorder. Med Sci Monit. 2015;21:459–67.

    PubMed  PubMed Central  Google Scholar 

  61. Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 2017;11:626.

    PubMed  PubMed Central  Google Scholar 

  62. Kelly PA, Viding E, Puetz VB, Palmer AL, Mechelli A, Pingault JB, et al. Sex differences in socioemotional functioning, attentional bias, and gray matter volume in maltreated children: a multilevel investigation. Dev Psychopathol. 2015;27(4 Pt 2):1591–609.

    PubMed  Google Scholar 

  63. Busso DS, McLaughlin KA, Brueck S, Peverill M, Gold AL, Sheridan MA. Child abuse, neural structure, and adolescent psychopathology: a longitudinal study. J Am Acad Child Adolesc Psychiatry. 2017;56:321–8.e1.

    PubMed  PubMed Central  Google Scholar 

  64. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17:652–66.

    CAS  PubMed  Google Scholar 

  65. Brain Development Cooperative Group. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb Cortex. 2012;22:1–12.

    Google Scholar 

  66. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol. 2017;44:122–37.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behavior in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant “STRATIFY” (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), the FP7 projects IMAGEMEND (602450; IMAging GEnetics for MENtal Disorders) and MATRICS (603016), the Innovative Medicine Initiative Project EU-AIMS (115300-2), the Medical Research Council Grant “c-VEDA” (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the Swedish Research Council FORMAS, the Medical Research Council, the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; eMED SysAlc01ZX1311A; Forschungsnetz AERIAL 01EE1406A), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-1, SM 80/7-2, SFB 940/1). Further support was provided by grants from: ANR (project AF12-NEUR0008-01-WM2NA, and ANR-12-SAMA-0004), the Fondation de France, the Fondation pour la Recherche Médicale, the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence.

Other IMAGEN Consortium members

Pausova Z., Mann K., Barker G.J., Lawrence C., Rietschel M., Robbins T.W., Williams S., Nymberg C., Topper L., Smith L., Havatzias S., Stueber K., Mallik C., Clarke T.K., Stacey D., Peng Wong C., Werts H., Williams S., Andrew C., Häke I., Ivanov N., Klär A., Reuter J., Palafox C., Hohmann C., Lüdemann K., Romanowski A., Ströhle A., Wolff E., Rapp M., Ihlenfeld A., Walaszek B., Schubert F., Connolly C., Jones J., Lalor E., McCabe E., NíShiothcháin A., Spanagel R., Sommer W., Steiner S., Buehler M., Stolzenburg E., Schmal C., Schirmbeck F., Heym N., Newman C., Huebner T., Ripke S., Mennigen E., Muller K., Ziesch V., Lueken L., Yacubian J., Finsterbusch J., Bordas N., Bricaud Z., Galinowski A., Gourlan C., Schwartz Y., Lalanne C., Barbot A., Thyreau B., Subramaniam N., Theobald D., Richmond N., de Rover M., Molander A., Jordan E., Robinson E., Hipolata L., Moreno M., Arroyo M., Stephens D., Ripley T., Crombag H., Lathrop M., Lanzerath D., Heinrichs B., Spranger T., Resch F., Haffner J., Parzer P., Brunner R., Constant P., Mignon X., Thomsen T., Vestboe A., Ireland J., Rogers J.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Erin Burke Quinlan.

Ethics declarations

Conflict of interest

T.B. has served as an advisor or consultant to Bristol-Myers Squibb, Desitin Arzneimittel, Eli Lilly, Medice, Novartis, Pfizer, Shire, UCB, and Vifor Pharma; he has received conference attendance support, conference support, or speaking fees from Eli Lilly, Janssen McNeil, Medice, Novartis, Shire, and UCB; and he is involved in clinical trials conducted by Eli Lilly, Novartis, and Shire; the present work is unrelated to these relationships. E.D.B. has received funding for a PhD student and honoraria for teaching on scanner programming courses from General Electric Healthcare; he acts as a consultant for IXICO. H.W. received a speaker honorarium from Servier (2014). The remaining authors declare that they have no conflict of interest.

Additional information

Members of the IMAGEN Consortium are listed below the Acknowledgements.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinlan, E.B., Barker, E.D., Luo, Q. et al. Peer victimization and its impact on adolescent brain development and psychopathology. Mol Psychiatry 25, 3066–3076 (2020). https://doi.org/10.1038/s41380-018-0297-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0297-9

This article is cited by

Search

Quick links