Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKAEMIA

Glucose partitioning in the bone marrow micro-environment in acute myeloid leukaemia

Abstract

Acute myeloid leukaemia (AML) cells metabolise glucose by glycolysis-based re-programming. However, how glucose uptake is partitioned between leukaemia cells and other cells of the bone marrow micro-environment is unstudied. We used a positron emission tomography (PET) tracer 18F fluorodeoxyglucose ([18F]-FDG) probe and transcriptomic analyses to detect glucose uptake by diverse cells in the bone marrow micro-environment in a MLL-AF9-induced mouse model. Leukaemia cells had the greatest glucose uptake with leukaemia stem and progenitor cells having the greatest glucose uptake. We also show the effects of anti-leukaemia drugs on leukaemia cell numbers and glucose uptake. Our data suggest targeting glucose uptake as a potential therapy strategy in AML if our observations are validated in humans with AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucose uptake by diverse cell populations in the MLL-AF9 AML mouse model.
Fig. 2: Glucose uptake by stem and progenitor leukaemia cells.
Fig. 3: Glucose uptake after anti-leukaemia drugs.

Similar content being viewed by others

Data availability

Data are available in the text and supplement. Raw transcriptomic data have been submitted to GEO database under the accession number GSE227584. R scripts are available upon reasonable request from HZ.

Code availability

Data are available in the text and supplement. Raw transcriptomic data have been submitted to GEO database under the accession number GSE227584. R scripts are available upon reasonable request from HZ.

References

  1. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

    Article  PubMed Central  Google Scholar 

  2. Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, Nemkov T, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. Cell Stem Cell. 2020;27:748–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D’Alessandro A, Winters A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat Cancer. 2020;1:1176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones CL, Stevens BM, D’Alessandro A, Reisz JA, Culp-Hill R, Nemkov T. et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2019;35:333–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.

    Article  CAS  PubMed  Google Scholar 

  6. Ye H, Adane B, Khan N, Alexeev E, Nusbacher N, Minhajuddin M, et al. Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells. Cancer Cell. 2018;34:659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021;593:282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saito Y, Chapple RH, Lin A, Kitano A, Nakada D. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell. 2015;17:585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16:635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res. 2021;40:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eberwine J, Sul J-Y, Bartfai T, Kim J. The promise of single-cell sequencing. Nat Methods. 2014;11:25–7.

    Article  CAS  PubMed  Google Scholar 

  12. Huang D, Sun G, Hao X, He X, Zheng Z, Chen C, et al. ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression. J Clin Invest. 2021;131:e138986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao A, Gong Y, Zhu C, Yang W, Li Q, Zhao M, et al. Bone marrow endothelial cell-derived interleukin-4 contributes to thrombocytopenia in acute myeloid leukemia. Haematologica. 2019;104:1950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJ, et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia. 2013;27:852–60.

    Article  CAS  PubMed  Google Scholar 

  15. Hassanein M, Hight MR, Buck JR, Tantawy MN, Nickels ML, Hoeksema MD, et al. Preclinical evaluation of 4-[18F]Fluoroglutamine PET to assess ASCT2 expression in lung cancer. Mol Imaging Biol. 2016;18:18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stölzel F, Lüer T, Löck S, Parmentier S, Kuithan F, Kramer M, et al. The prevalence of extramedullary acute myeloid leukemia detected by FDG-PET/CT: final results from the prospective PETAML trial. Haematologica. 2020;105:1552–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  19. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia. 2022;36:1–12.

    Article  PubMed  Google Scholar 

  21. Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, et al. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell. 2021;39:999–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuurhuis GJ, Heuser M, Freeman S, Béné M-C, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131:1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018;2:1356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Drs. Xiaoping Yi (Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China) and Xiaoxia Hu (Collaborative Innovation Centre of Haematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China) kindly reviewed the typescript. RPG acknowledges support from the National Institute of Health Research (NIHR) Biomedical Research Centre.

Funding

Supported, in part, by the Talent Young Programme of Guangdong Province (2021B1515020017), National Natural Science Foundation of China (Grant No. 81970143 and No. 82270167), Municipal School Joint Programme from Guangzhou Science and Technological Project (202201020012) and the Leading Talents Programme from The First Affiliated Hospital of Jinan University to HZ.

Author information

Authors and Affiliations

Authors

Contributions

SQD data curation, experiment conduction, statistical and transcriptomic analysis, visualisation, preparing the typescript. JD data curation, result interpretation, investigation, preparing and editing the typescript. RPG, data interpretation, reviewing and editing the typescript. LW technical support. HEZ, FSL, KXH experimental assistance. HX technical support. HZ project design, investigation, data interpretation, reviewing and editing the typescript. All authors take responsibility for the content of the typescript and agreed to submit for publication.

Corresponding author

Correspondence to Hui Zeng.

Ethics declarations

Competing interests

RPG is a consultant to NexImmune Inc. Nanexa Pharma Ascentage Pharm Group and Antengene Biotech LLC, Medical Director of FFF Enterprises Inc.; Partner in AZCA Inc.; Board of Directors of Russian Foundation for Cancer Research Support and Scientific Advisory Board: StemRad Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Du, J., Gale, R.P. et al. Glucose partitioning in the bone marrow micro-environment in acute myeloid leukaemia. Leukemia 37, 1407–1412 (2023). https://doi.org/10.1038/s41375-023-01912-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01912-1

Search

Quick links