Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreased expression of JHDMID in placenta is associated with preeclampsia through HLA-G

Abstract

The exact mechanism of preeclampsia (PE) remains unclear, accumulating researches have indicated multiple epigenetic factors relate to PE and histone methylation plays a crucial role in modifying the gene expression. So we aimed to confirm that abnormal expression of histone demethylase JHDM1D contributes to PE and lower expression of HLA-G in PE. We tested the expression of JHDM1D, H3K9me2, and H3K27me2 in the placentas of PE and normal control (NC)women who had a healthy pregnancy with Immunohistochemistry and we found that JHDM1D, H3K9me2, and H3K27me2 were all mainly expressed in the nuclei of the extra-villous trophoblasts (EVTs). JHDM1D was lower expressed in PE than in NC placentas, corresponding with the mRNA level and protein level with qTR-PCR and western blot, while H3K9me2 and H3K27me2 were higher expressed in PE. We further investigated the biological functions of JHDM1D in HTR-8/SVneo cells. We found that siJHDM1D inhibited cell growth after 24 h of the transfection and reduced the invasion, while increasing the apoptosis of HTR-8/SVneo. We then constructed the siJHDM1D stable cell line and confirmed with CHIP-qPCR that siJHDM1D inhibited the expression of HLA-G through increased the enrichment of H3K9me2 and H3K27me2 in the JHDM1D bounding region of HLA-G. Taken together, our study confirms that decreased expression of JHDM1D is associated with PE through down-regulating HLA-G and casts new light to the diagnosis and therapy of PE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33:130–7.

    Article  PubMed  Google Scholar 

  2. Liu X, Gu W, Li X. HLA-G regulates the invasive properties of JEG-3 choriocarcinoma cells by controlling STAT3 activation. Placenta. 2013;34:1044–52.

    Article  CAS  PubMed  Google Scholar 

  3. Chen LJ, Han ZQ, Zhou H, Zou L, Zou P. Inhibition of HLA-G expression via RNAi abolishes resistance of extravillous trophoblast cell line TEV-1 to NK lysis. Placenta. 2010;31:519–27.

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Liu X, Jin H, Yang F, Gu W, Li X. Proteomic analysis of knock-down HLA-G in invasion of human trophoblast cell line JEG-3. Int J Clin Exp Pathol. 2013;6:2451–9.

    PubMed  PubMed Central  Google Scholar 

  5. Yie SM, Li LH, Li YM, Librach C. HLA-G protein concentrations in maternal serum and placental tissue are decreased in preeclampsia. Am J Obstet Gynecol. 2004;191:525–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hara N, Fujii T, Yamashita T, Kozuma S, Okai T, Taketani Y. Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody “87G” and anti-cytokeratin antibody “CAM5.2”. Am J Reprod Immunol. 1996;36:349–58.

    Article  CAS  PubMed  Google Scholar 

  7. Tang Y, Liu H, Li H, Peng T, Gu W, Li X. Hypermethylation of the HLA-G promoter is associated with preeclampsia. Mol Hum Reprod. 2015;21:736–44.

    Article  CAS  PubMed  Google Scholar 

  8. Jasinski-Bergner S, Reches A, Stoehr C, Massa C, Gonschorek E, Huettelmaier S, et al. Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget. 2016;7:26866–78.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holling TM, Bergevoet MW, Wierda RJ, van Eggermond MC, van den Elsen PJ. Genetic and epigenetic control of the major histocompatibility complex class Ib gene HLA-G in trophoblast cell lines. Ann N Y Acad Sci. 2009;1173:538–44.

    Article  CAS  PubMed  Google Scholar 

  10. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–6.

    Article  CAS  PubMed  Google Scholar 

  11. Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010;24:432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costa-Reis P, Sullivan KE. Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep. 2013;15:369.

    Article  CAS  PubMed  Google Scholar 

  13. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet. 2002;77:67–75.

    Article  Google Scholar 

  14. Song X, Rui C, Meng L, Zhang R, Shen R, Ding H, et al. Long non-coding RNA RPAIN regulates the invasion and apoptosis of trophoblast cell lines via complement protein C1q. Oncotarget. 2017;8:7637–46.

    PubMed  Google Scholar 

  15. Qian Y, Lu Y, Rui C, Qian Y, Cai M, Jia R. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 2016;39:1380–90.

    Article  CAS  PubMed  Google Scholar 

  16. Zhuang XW, Li J, Brost BC, Xia XY, Chen HB, Wang CX, et al. Decreased expression and altered methylation of syncytin-1 gene in human placentas associated with preeclampsia. Curr Pharm Des. 2014;20:1796–802.

    Article  CAS  PubMed  Google Scholar 

  17. Luo S, Cao N, Tang Y, Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One. 2017;12:e178549.

    Google Scholar 

  18. Tang Y, Liu H, Li H, Peng T, Gu W, Li X. Hypermethylation of the HLA-G promoter is associated with preeclampsia. Mol Hum Reprod. 2015;21:736–44.

    Article  CAS  PubMed  Google Scholar 

  19. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74.

    Article  CAS  PubMed  Google Scholar 

  20. Osawa T, Muramatsu M, Wang F, Tsuchida R, Kodama T, Minami T, et al. Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci USA. 2011;108:20725–9.

    Article  PubMed  Google Scholar 

  21. Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481–6.

    Article  CAS  Google Scholar 

  22. Ji X, Jin S, Qu X, Li K, Wang H, He H, et al. Lysine-specific demethylase 5C promotes hepatocellular carcinoma cell invasion through inhibition BMP7 expression. BMC Cancer. 2015;15:801.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xia M, Yao L, Zhang Q, Wang F, Mei H, Guo X, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3. Oncotarget. 2017;8:19795–802.

    PubMed  PubMed Central  Google Scholar 

  24. Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010;24:432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fortschegger K, de Graaf P, Outchkourov NS, van Schaik FM, Timmers HT, Shiekhattar R. PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol Cell Biol. 2010;30:3286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, et al. The roles of Jumonji-type oxygenases in human disease. Epigenomics. 2014;6:89–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin H, Wang Y, Wang Y, Tian F, Pu P, Yu Y, et al. Coordinated regulation of active and repressive histone methylations by a dual-specificity histone demethylase ceKDM7A from Caenorhabditis elegans. Cell Res. 2010;20:899–907.

    Article  CAS  PubMed  Google Scholar 

  28. Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol. 2010;17:38–43.

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, et al. The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev. 2012;26:1364–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010;24:432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007;2:1849–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2016YFC1000403) and by Natural Science Foundation of China (Grant No. 81471470 to W.-R.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weirong Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Pei, J., Li, X. et al. Decreased expression of JHDMID in placenta is associated with preeclampsia through HLA-G. J Hum Hypertens 32, 448–454 (2018). https://doi.org/10.1038/s41371-018-0062-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0062-1

This article is cited by

Search

Quick links