Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seafood, wine, rice, vegetables, and other food items associated with mercury biomarkers among seafood and non-seafood consumers: NHANES 2011–2012

Abstract

Fish/seafood consumption is a source of mercury; other dietary sources are not well described. This cross-sectional study used National Health and Nutrition Examination Survey (NHANES) 2011–2012 data. Participants self-reported consuming fish/seafood (N = 5427) or not (N = 1770) within the past 30 days. Whole blood total mercury (THg), methylmercury (MeHg), and urinary mercury (UHg) were determined. Diet was assessed using 24 h recall. Adjusted regression models predicted mercury biomarker concentrations with recent food consumption, while controlling for age, sex, education, and race/ethnicity. Geometric mean THg was 0.89 µg/L (95% confidence interval (CI): 0.78, 1.02) (seafood consumers) and 0.31 µg/L (95% CI: 0.28, 0.34) (non-seafood consumers); MeHg and UHg concentrations follow similar patterns. In adjusted regressions among seafood consumers, significant associations were observed between mercury biomarkers with multiple foods, including fish/seafood, wine, rice, vegetables/vegetable oil, liquor, and beans/nuts/soy. Among non-seafood consumers, higher THg was significantly associated with mixed rice dishes, vegetables/vegetable oil, liquor, and approached statistical significance with wine (p < 0.10); higher MeHg was significantly associated with wine and higher UHg was significantly associated with mixed rice dishes. Fish/seafood consumption is the strongest dietary predictor of mercury biomarker concentrations; however, consumption of wine, rice, vegetables/vegetable oil, or liquor may also contribute, especially among non-seafood consumers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Code availability

Code used in data analysis will be available as a Stata do-file on the EPA Science Hub website, https://catalog.data.gov/dataset/epa-sciencehub.

References

  1. WHO. Ten chemicals of major public health concern. 2010. https://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/.

  2. Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: current research and emerging trends. Environ Res. 2017;159:545–54.

    PubMed  Google Scholar 

  3. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36:609–62.

    CAS  PubMed  Google Scholar 

  4. Syversen T, Kaur P. The toxicology of mercury and its compounds. J Trace Elem Med Biol. 2012;26:215–26.

    CAS  PubMed  Google Scholar 

  5. Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. J Toxicol Environ Health B Crit Rev. 2017;20:55–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fields CA, Borak J, Louis ED. Mercury-induced motor and sensory neurotoxicity: systematic review of workers currently exposed to mercury vapor. Crit Rev Toxicol. 2017;47:811–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Castoldi AF, Coccini T, Ceccatelli S, Manzo L. Neurotoxicity and molecular effects of methylmercury. Brain Res Bull. 2001;55:197–203.

    CAS  PubMed  Google Scholar 

  8. Davidson PW, Myers GJ, Weiss B. Mercury exposure and child development outcomes. Pediatrics. 2004;113:1023–9.

    PubMed  Google Scholar 

  9. Farina M, Rocha JBT, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011;89:555–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grandjean P, Budtz-Jorgensen E, White RF, Jorgensen PJ, Weihe P, Debes F, et al. Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am J Epidemiol. 1999;150:301–5.

    CAS  PubMed  Google Scholar 

  11. Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108:511.

    PubMed  PubMed Central  Google Scholar 

  12. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, et al. Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO. 2007;36:3–11.

    CAS  PubMed  Google Scholar 

  13. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ. 2014;92:254–69F.

    PubMed  PubMed Central  Google Scholar 

  14. Guallar E, Sanz-Gallardo MI, Veer Pvan’t, Bode P, Aro A, Gómez-Aracena J, et al. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med. 2002;347:1747–54.

    CAS  PubMed  Google Scholar 

  15. Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke: role of mercury toxicity in hypertension. J Clin Hypertens. 2011;13:621–7.

    CAS  Google Scholar 

  16. Virtanen JK, Rissanen TH, Voutilainen S, Tuomainen T-P. Mercury as a risk factor for cardiovascular diseases. J Nutritional Biochem. 2007;18:75–85.

    CAS  Google Scholar 

  17. Crowe W, Allsopp PJ, Watson GE, Magee PJ, Strain J, Armstrong DJ, et al. Mercury as an environmental stimulus in the development of autoimmunity—a systematic review. Autoimmun Rev. 2017;16:72–80.

    CAS  PubMed  Google Scholar 

  18. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013;47:4967–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellingsen DG, Bast-Pettersen R, Efskind J, Thomassen Y. Neuropsychological effects of low mercury vapor exposure in chloralkali workers. Neurotoxicology. 2001;22:249–58.

    CAS  PubMed  Google Scholar 

  20. Gibb H, O’Leary KG. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect. 2014;122:667–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li P, Du B, Chan HM, Feng X. Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environ Res. 2015;140:198–204.

    CAS  PubMed  Google Scholar 

  22. Khwaja MA, Abbasi MS. Mercury poisoning dentistry: high-level indoor air mercury contamination at selected dental sites. Rev Environ Health. 2014;29(1–2). https://www.degruyter.com/view/j/reveh.2014.29.issue-1-2/reveh-2014-0010/reveh-2014-0010.xml.

  23. Homme KG, Kern JK, Haley BE, Geier DA, King PG, Sykes LK, et al. New science challenges old notion that mercury dental amalgam is safe. Biometals. 2014;27:19–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindberg A, Björnberg KA, Vahter M, Berglund M. Exposure to methylmercury in non-fish-eating people in Sweden. Environ Res. 2004;96:28–33.

    CAS  PubMed  Google Scholar 

  25. Vieira SM, de Almeida R, Holanda IBB, Mussy MH, Galvão RCF, Crispim PTB, et al. Total and methyl-mercury in hair and milk of mothers living in the city of Porto Velho and in villages along the Rio Madeira, Amazon, Brazil. Int J Hyg Environ Health. 2013;216:682–9.

    CAS  PubMed  Google Scholar 

  26. Chan TYK. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin Toxicol. 2011;49:886–91.

    CAS  Google Scholar 

  27. Lee D, Lee K-G. Mercury and methylmercury in Korean herbal medicines and functional health foods. Food Addit Contam Part B Surveill. 2013;6:279–84.

    CAS  PubMed  Google Scholar 

  28. Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ Health Perspect. 2018;126:106001.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hong C, Yu X, Liu J, Cheng Y, Rothenberg SE. Low-level methylmercury exposure through rice ingestion in a cohort of pregnant mothers in rural China. Environ Res. 2016;150:519–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li P, Feng X, Yuan X, Chan HM, Qiu G, Sun G-X, et al. Rice consumption contributes to low level methylmercury exposure in southern China. Environ Int 2012;49:18–23.

    CAS  PubMed  Google Scholar 

  31. Rothenberg SE, Yu X, Liu J, Biasini FJ, Hong C, Jiang X, et al. Maternal methylmercury exposure through rice ingestion and offspring neurodevelopment: a prospective cohort study. Int J Hyg Environ Health. 2016;219:832–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Feng X, Larssen T, Qiu G, Vogt RD. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect. 2010;118:1183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis MA, Gilbert-Diamond D, Karagas MR, Li Z, Moore JH, Williams SM, et al. A Dietary-Wide Association Study (DWAS) of Environmental Metal Exposure in US Children and Adults. PLoS ONE 2014;9:e104768.

    PubMed  PubMed Central  Google Scholar 

  34. Rothenberg SE, Jackson BP, Carly McCalla G, Donohue A, Emmons AM. Co-exposure to methylmercury and inorganic arsenic in baby rice cereals and rice-containing teething biscuits. Environ Res. 2017;159:639–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Airaksinen R, Turunen AW, Rantakokko P, Männistö S, Vartiainen T, Verkasalo PK. Blood concentration of methylmercury in relation to food consumption. Public Health Nutr. 2011;14:480–9.

    PubMed  Google Scholar 

  36. Kwon YM, Lee HS, Yoo DC, Kim CH, Kim GS, Kim JA, et al. Dietary exposure and risk assessment of mercury from the Korean total diet study. J Toxicol Environ Health Part A. 2009;72:1484–92.

    CAS  PubMed  Google Scholar 

  37. Miklavčič A, Mazej D, Jaćimović R, Dizdarevi T, Horvat M. Mercury in food items from the Idrija Mercury Mine area. Environ Res. 2013;125:61–8.

    PubMed  Google Scholar 

  38. Park S, Lee B-K. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population. Arch Environ Contam Toxicol. 2013;64:160–70.

    CAS  PubMed  Google Scholar 

  39. Shao D, Kang Y, Cheng Z, Wang H, Huang M, Wu S, et al. Hair mercury levels and food consumption in residents from the Pearl River Delta: South China. Food Chem 2013;136:682–8.

    CAS  PubMed  Google Scholar 

  40. Filippini T, Malavolti M, Cilloni S, Wise LA, Violi F, Malagoli C, et al. Intake of arsenic and mercury from fish and seafood in a Northern Italy community. Food Chem Toxicol. 2018;116:20–6.

    CAS  PubMed  Google Scholar 

  41. Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R. Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect. 2013;121:1214–8.

    PubMed  PubMed Central  Google Scholar 

  42. Dufault R, LeBlanc B, Schnoll R, Cornett C, Schweitzer L, Wallinga D, et al. Mercury from chlor-alkali plants: measured concentrations in food product sugar. Environ Health. 2009;8:2.

    PubMed  PubMed Central  Google Scholar 

  43. Gagné D, Lauzière J, Blanchet R, Vézina C, Vaissière E, Ayotte P, et al. Consumption of tomato products is associated with lower blood mercury levels in Inuit preschool children. Food Chem Toxicol. 2013;51:404–10.

    PubMed  Google Scholar 

  44. Awata H, Linder S, Mitchell LE, Delclos GL. Association of dietary intake and biomarker levels of arsenic, cadmium, lead, and mercury among Asian populations in the United States: NHANES 2011–2012. Environ Health Perspect. 2017;125:314–23.

    CAS  PubMed  Google Scholar 

  45. Wells EM, Herbstman JB, Lin YH, Hibbeln JR, Halden RU, Witter FR, et al. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy. Environ Res. 2017;154:247–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. CDC. NHANES 2011–2012 Laboratory Methods. 2013. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/LabMethods.aspx?BeginYear=2011.

  47. US EPA. Chemical assessment summary: methylmercury (MeHg); CASRN 22967-92-6. Washington, D.C.: US Environmental Protection Agency, Integrated Risk Assessment System (IRIS); 2001. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0073_summary.pdf.

    Google Scholar 

  48. Stern AH, Smith AE. An assessment of the cord blood:maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect. 2003;111:1465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Birch RJ, Bigler J, Rogers JW, Zhuang Y, Clickner RP. Trends in blood mercury concentrations and fish consumption among U.S. women of reproductive age, NHANES, 1999–2010. Environ Res. 2014;133:431–8.

    CAS  PubMed  Google Scholar 

  50. Mahaffey KR, Clickner RP, Bodurow CC. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect. 2004;112:562–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mortensen ME, Caudill SP, Caldwell KL, Ward CD, Jones RL. Total and methyl mercury in whole blood measured for the first time in the U.S. population: NHANES 2011–2012. Environ Res. 2014;134:257–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Buchanan S, Anderson HA, Xiao Z, Persky V, Turyk ME. Association of methylmercury intake from seafood consumption and blood mercury level among the Asian and Non-Asian populations in the United States. Environ Res. 2018;160:212–22.

    CAS  PubMed  Google Scholar 

  53. Buchanan S, Targos L, Nagy KL, Kearney KE, Turyk M. Fish consumption and hair mercury among Asians in Chicago. J Occup Environ Med. 2015;57:1325–30.

    CAS  PubMed  Google Scholar 

  54. Lin S, Herdt-Losavio ML, Chen M, Luo M, Tang J, Hwang S-A. Fish consumption patterns, knowledge and potential exposure to mercury by race. Int J Environ Health Res. 2014;24:291–303.

    CAS  PubMed  Google Scholar 

  55. McKelvey W, Jeffery N, Clark N, Kass D, Parsons PJ. Population-based inorganic mercury biomonitoring and the identification of skin care products as a source of exposure in New York City. Environ Health Perspect. 2011;119:203–9.

    CAS  PubMed  Google Scholar 

  56. Cui W, Liu G, Bezerra M, Lagos DA, Li Y, Cai Y. Occurrence of methylmercury in rice-based infant cereals and estimation of daily dietary intake of methylmercury for infants. J Agric Food Chem. 2017;65:9569–78.

    CAS  PubMed  Google Scholar 

  57. Feng X, Li P, Qiu G, Wang S, Li G, Shang L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ Sci Technol. 2008;42:326–32.

    CAS  PubMed  Google Scholar 

  58. Rothenberg SE, Yin R, Hurley JP, Krabbenhoft DP, Ismawati Y, Hong C, et al. Stable mercury Isotopes in polished rice (Oryza sativa L.) and hair from rice consumers. Environ Sci Technol. 2017;51:6480–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong Y-D, Ou L-B, Chen L, Wang H-H, Chen C, Wang X-J, et al. Modeled methylmercury exposure and risk from rice consumption for vulnerable populations in a traditional fish-eating area in China. Environ Toxicol Chem. 2015;34:1161–8.

    CAS  PubMed  Google Scholar 

  60. Antoniadis V, Shaheen SM, Boersch J, Frohne T, Du Laing G, Rinklebe J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J Environ Manag. 2017;186:192–200.

    CAS  Google Scholar 

  61. Bempah CK, Ewusi A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environ Monit Assess. 2016;188:261.

    PubMed  Google Scholar 

  62. Kootbodien T, Mathee A, Naicker N, Moodley N. Heavy metal contamination in a school vegetable garden in Johannesburg. S Afr Med J. 2012;102:226–7.

    CAS  PubMed  Google Scholar 

  63. Riaz A, Khan S, Muhammad S, Liu C, Shah MT, Tariq M. Mercury contamination in selected foodstuffs and potential health risk assessment along the artisanal gold mining, Gilgit-Baltistan, Pakistan. Environ Geochem Health. 2018;40:625–35.

    CAS  PubMed  Google Scholar 

  64. Yu H, Li J, Luan Y. Meta-analysis of soil mercury accumulation by vegetables. Sci Rep. 2018;8:1261.

    PubMed  PubMed Central  Google Scholar 

  65. De Temmerman L, Waegeneers N, Claeys N, Roekens E. Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: an important step in terrestrial food chain analysis. Environ Pollut. 2009;157:1337–41.

    PubMed  Google Scholar 

  66. Jiskra M, Sonke JE, Obrist D, Bieser J, Ebinghaus R, Myhre CL, et al. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nat Geosci. 2018;11:244–50.

    CAS  Google Scholar 

  67. Göthberg A, Greger M, Bengtsson B-E. Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem. 2002;21:1934–9.

    PubMed  Google Scholar 

  68. Islam GMR, Khan FE, Hoque MM, Jolly YN. Consumption of unsafe food in the adjacent area of Hazaribag tannery campus and Buriganga River embankments of Bangladesh: heavy metal contamination. Environ Monit Assess. 2014;186:7233–44.

    CAS  PubMed  Google Scholar 

  69. Bache CA, Gutenmann WH, St. John LE, Sweet RD, Hatfield HH, Lisk DJ. Mercury and methylmercury content of agricultural crops grown on soils treated with various mercury compounds. J Agric Food Chem. 1973;21:607–13.

    CAS  PubMed  Google Scholar 

  70. Benbrahim M, Denaix L, Thomas A-L, Balet J, Carnus J-M. Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut. 2006;144:847–54.

    CAS  PubMed  Google Scholar 

  71. Cappon CJ. Uptake and speciation of mercury and selenium in vegetable crops grown on compost-treated soil. Water Air Soil Pollut. 1987;34:353–61.

    CAS  Google Scholar 

  72. Sloan JJ, Dowdy RH, Balogh SJ, Nater E. Distribution of mercury in soil and its concentration in runoff from a biosolids-amended agricultural watershed. J Environ Qual. 2001;30:2173–9.

    CAS  PubMed  Google Scholar 

  73. Li Z, Wang Q, Luo Y. Exposure of the urban population to mercury in Changchun city, Northeast China. Environ Geochem Health. 2006;28:61–6.

    CAS  PubMed  Google Scholar 

  74. Wai K-M, Dai J, Yu PKN, Zhou X, Wong CMS. Public health risk of mercury in China through consumption of vegetables, a modelling study. Environ Res. 2017;159:152–7.

    CAS  PubMed  Google Scholar 

  75. Sponder M, Fritzer-Szekeres M, Marculescu R, Mittlböck M, Uhl M, Köhler-Vallant B, et al. Blood and urine levels of heavy metal pollutants in female and male patients with coronary artery disease. Vasc Health Risk Manag. 2014;10:311–7.

    PubMed  PubMed Central  Google Scholar 

  76. Gundacker C, Komarnicki G, Zödl B, Forster C, Schuster E, Wittmann K. Whole blood mercury and selenium concentrations in a selected Austrian population: does gender matter? Sci Total Environ. 2006;372:76–86.

    CAS  PubMed  Google Scholar 

  77. Chung H-K, Park JY, Cho Y, Shin M-J. Contribution of dietary patterns to blood heavy metal concentrations in Korean adults: findings from the Fifth Korea National Health and Nutrition Examination Survey 2010. Food Chem Toxicol. 2013;62:645–52.

    CAS  PubMed  Google Scholar 

  78. Dressler VL, Santos CMM, Antes FG, Bentlin FRS, Pozebon D, Flores EMM. Total mercury, inorganic mercury and methyl mercury determination in red wine. Food Anal Methods. 2012;5:505–11.

    Google Scholar 

  79. Frías S, Díaz C, Conde JE, Pérez Trujillo JP. Selenium and mercury concentrations in sweet and dry bottled wines from the Canary Islands, Spain. Food Addit Contam. 2003;20:237–40.

    PubMed  Google Scholar 

  80. Santos S, Lapa N, Alves A, Morais J, Mendes B. Analytical methods and validation for determining trace elements in red wines. J Environ Sci Health Part B. 2013;48:364–75.

    CAS  Google Scholar 

  81. Semla M, Schwarcz P, Mezey J, Binkowski ŁJ, Błaszczyk M, Formicki G, et al. Biogenic and risk elements in wines from the Slovak market with the estimation of consumer exposure. Biol Trace Elem Res. 2018;184:33–41.

    CAS  PubMed  Google Scholar 

  82. Ahluwalia N, Dwyer J, Terry A, Moshfegh A, Johnson C. Update on NHANES dietary data: focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr. 2016;7:121–34.

    PubMed  PubMed Central  Google Scholar 

  83. Árvay J, Tomáš J, Hauptvogl M, Massányi P, Harangozo Ľ, Tóth T, et al. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J Environ Sci Health B. 2015;50:833–43.

    PubMed  Google Scholar 

Download references

Acknowledgements

The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the US Environmental Protection Agency (EPA). EMW’s work was supported under a faculty research participation program between the Oak Ridge Institute for Science and Education (ORISE) and the EPA’s National Center for Environmental Assessment (NCEA/ORD/EPA) as well as the United States National Institute of Occupational Safety and Health under Grant T03OH008615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Wells.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, E.M., Kopylev, L., Nachman, R. et al. Seafood, wine, rice, vegetables, and other food items associated with mercury biomarkers among seafood and non-seafood consumers: NHANES 2011–2012. J Expo Sci Environ Epidemiol 30, 504–514 (2020). https://doi.org/10.1038/s41370-020-0206-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0206-6

Keywords

This article is cited by

Search

Quick links