Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bariatric Surgery

Transcriptional and epigenetic changes after dietary and surgical weight loss interventions in an animal model of obesity

Abstract

Background

Identifying determinants that can predict response to weight loss interventions is imperative for optimizing therapeutic benefit. We aimed to identify changes in DNA methylation and mRNA expression of a subset of target genes following dietary and surgical interventions in high-fat-diet (HFD)-induced obese rats.

Methods

Forty-two adult Wistar Han male rats were divided into two groups: control rats (n = 7) and obese rats (n = 28), fed a HFD for 10 weeks (t10). Obese rats were randomly subdivided into five intervention groups (seven animals per group): (i) HFD; (ii) very-low-calorie diet (VLCD); (iii) sham surgery, and (iv) sleeve gastrectomy (SG). At week sixteen (t16), animals were sacrificed and tissue samples were collected to analyze changes in DNA methylation and mRNA expression of the selected genes.

Results

By type of intervention, the surgical procedures led to the greatest weight loss. Changes in methylation and/or expression of candidate genes occurred proportionally to the effectiveness of the weight loss interventions. Leptin expression, increased sixfold in the visceral fat of the obese rats, was partially normalized after all interventions. The expression of fatty acid synthase (FASN) and monocyte chemoattractant protein 1 (MCP-1) genes, which was reduced 0.5- and 0.15-fold, respectively, in the liver tissue of obese rats, were completely normalized after weight loss interventions, particularly after surgical interventions. The upregulation of FASN and MCP-1 gene expression was accompanied by a significant reduction in promoter methylation, up to 0.5-fold decrease in the case of the FASN (all intervention groups) and a 0.8-fold decrease in the case of the MCP-1 (SG group).

Conclusions

Changes in tissue expression of specific genes involved in the pathophysiological mechanisms of obesity can be significantly attenuated following weight loss interventions, particularly surgery. Some of these genes are regulated by epigenetic mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the experimental design.
Fig. 2: Weight evolution in the experimental groups from week 10 to week 16.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. World Health Organization (WHO). Obesity and overweight, 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 16 May 2022.

  2. Sheikh AB, Nasrullah A, Haq S, Akhtar A, Ghazanfar H, Nasir A, et al. The interplay of genetics and environmental factors in the development of obesity. Cureus. 2017;9:e1435.

    PubMed  PubMed Central  Google Scholar 

  3. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in 700,000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Min J, Chiu DT, Wang Y. Variation in the heritability of body mass index based on diverse twin studies: a systematic review. Obes Rev. 2013;14:871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fairbrother U, Kidd E, Malagamuwa T, Walley A. Genetics of severe obesity. Curr Diab Rep. 2018;18:85.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.

    Article  CAS  PubMed  Google Scholar 

  8. Kühnen P, Clément K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med. 2016;375:240–6.

    Article  PubMed  Google Scholar 

  9. Saeed S, Arslan M, Froguel P. Genetics of obesity in consanguineous populations: toward precision medicine and the discovery of novel obesity genes. Obesity. 2018;26:474–84.

    Article  PubMed  Google Scholar 

  10. Bomberg EM, Ryder JR, Brundage RC, Straka RJ, Fox CK, Gross AC, et al. Precision medicine in adult and pediatric obesity: a clinical perspective. Ther Adv Endocrinol Metab. 2019;10:2042018819863022.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goni L, Cuervo M, Milagro FI, Martínez JA. Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J Nutr. 2015;146:905s–12s.

    Article  PubMed  Google Scholar 

  12. Martínez J, Milagro F. Genetics of weight loss: a basis for personalized obesity management. Trends Food Sci Technol. 2015;42:97–115.

    Article  Google Scholar 

  13. Fall T, Mendelson M, Speliotes EK. Recent advances in human genetics and epigenetics of adiposity: pathway to precision medicine? Gastroenterology. 2017;152:1695–706.

    Article  CAS  PubMed  Google Scholar 

  14. Izquierdo AG, Crujeiras AB. Obesity-related epigenetic changes after bariatric surgery. Front Endocrinol. 2019;10:232.

    Article  Google Scholar 

  15. Ouni M, Schurmann A. Epigenetic contribution to obesity. Mamm Genome. 2020;31:134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez PP, Nicholson SE, Burkhardt GE, Johnson RA, Johnson FK. Development of a sleeve gastrectomy weight loss model in obese Zucker rats. J Surg Res. 2009;157:243–50.

    Article  PubMed  Google Scholar 

  17. de Moura EDM, Dos Reis SA, da Conceicao LL, Sediyama C, Pereira SS, de Oliveira LL, et al. Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetol Metab Syndr. 2021;13:32.

    Article  Google Scholar 

  18. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;5:61. 5

    Google Scholar 

  19. Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D, et al. High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte. 2016;5:11–21.

    Article  CAS  PubMed  Google Scholar 

  20. Chawla S, Tessarolo Silva F, Amaral Medeiros S, Mekary RA, Radenkovic D. The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: a systematic review and meta-analysis. Nutrients. 2020;12:3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramzy AR, Nausheen S, Chelikani PK. Ileal transposition surgery produces ileal length-dependent changes in food intake, body weight, gut hormones and glucose metabolism in rats. Int J Obes. 2014;38:379–87.

    Article  CAS  Google Scholar 

  22. Talavera-Urquijo E, Rodriguez-Navarro S, Beisani M, Salcedo-Allende MT, Chakkur A, Arus-Aviles M, et al. Morphofunctional changes after sleeve gastrectomy and very low calorie diet in an animal model of non-alcoholic fatty liver disease. Obes Surg. 2018;28:142–51.

    Article  PubMed  Google Scholar 

  23. Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am. 2009;29:247–64.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vicente D, Patino M, Marcus R, Lillmoe H, Limani P, Newhook T, et al. Impact of epidural analgesia on the systemic biomarker response after hepatic resection. Oncotarget. 2019;10:584–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giles ED, Jackman MR, MacLean PS. Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front Nutr. 2016;3:50.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155–61.

    Article  CAS  PubMed  Google Scholar 

  27. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  CAS  PubMed  Google Scholar 

  28. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:585887.

    Article  Google Scholar 

  29. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.

    Article  CAS  PubMed  Google Scholar 

  30. Dallner OS, Marinis JM, Lu YH, Birsoy K, Werner E, Fayzikhodjaeva G, et al. Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med. 2019;25:507–16.

    Article  CAS  PubMed  Google Scholar 

  31. Wrann CD, Rosen ED. New insights into adipocyte-specific leptin gene expression. Adipocyte. 2012;1:168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohtar O, Ozdemir C, Roy D, Shantaram D, Emili A, Kandror KV. Egr1 mediates the effect of insulin on leptin transcription in adipocytes. J Biol Chem. 2019;294:5784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melzner I, Scott V, Dorsch K, Fischer P, Wabitsch M, Brüderlein S, et al. Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J Biol Chem. 2002;277:45420–7.

    Article  CAS  PubMed  Google Scholar 

  34. Stöger R. In vivo methylation patterns of the leptin promoter in human and mouse. Epigenetics. 2006;1:155–62.

    Article  PubMed  Google Scholar 

  35. Wilhelm J, Birkenstock A, Buchholz V, Muller A, Aly SA, Gruner-Labitzke K, et al. Promoter methylation of LEP and LEPR before and after bariatric surgery: a cross-sectional study. Obes Facts. 2021;14:1–7.

    Article  PubMed  Google Scholar 

  36. Houde AA, Légaré C, Biron S, Lescelleur O, Biertho L, Marceau S, et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet. 2015;16:29.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Okada Y, Sakaue H, Nagare T, Kasuga M. Diet-induced up-regulation of gene expression in adipocytes without changes in DNA methylation. Kobe J Med Sci. 2009;54:E241–9.

    PubMed  Google Scholar 

  38. Sadashiv ModiA, Khokhar M, Sharma P, Joshi R, Mishra SS, et al. Leptin DNA methylation and its association with metabolic risk factors in a Northwest Indian obese population. J Obes Metab Syndr. 2021;30:304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, et al. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem. 2011;67:463–70.

    Article  CAS  PubMed  Google Scholar 

  40. Milagro FI, Campión J, Cordero P, Goyenechea E, Gómez-Uriz AM, Abete I, et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. Faseb j. 2011;25:1378–89.

    Article  CAS  PubMed  Google Scholar 

  41. Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem. 2009;65:1–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lecoutre S, Oger F, Pourpe C, Butruille L, Marousez L, Dickes-Coopman A, et al. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Mol Metab. 2017;6:922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahima RS. Revisiting leptin’s role in obesity and weight loss. J Clin Investig. 2008;118:2380–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mendoza-Herrera K, Florio AA, Moore M, Marrero A, Tamez M, Bhupathiraju SN, et al. The leptin system and diet: a mini review of the current evidence. Front Endocrinol. 2021;12:749050.

    Article  Google Scholar 

  45. Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavaldà JM, Hernández M, et al. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23:1790–8.

    Article  PubMed  Google Scholar 

  46. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  CAS  PubMed  Google Scholar 

  47. Andreoli MF, Donato J, Cakir I, Perello M. Leptin resensitisation: a reversion of leptin-resistant states. J Endocrinol. 2019;241:R81–R96.

    Article  CAS  PubMed  Google Scholar 

  48. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Investig. 2008;118:2583–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003;144:5159–65.

    Article  CAS  PubMed  Google Scholar 

  50. Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15:312–21.

    Article  CAS  PubMed  Google Scholar 

  51. Ceddia RB. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes. 2005;29:1175–83.

    Article  CAS  Google Scholar 

  52. Lomba A, Martínez JA, García-Díaz DF, Paternain L, Marti A, Campión J, et al. Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab. 2010;101:273–8.

    Article  CAS  PubMed  Google Scholar 

  53. Fukuda H, Iritani N, Sugimoto T, Ikeda H. Transcriptional regulation of fatty acid synthase gene by insulin/glucose, polyunsaturated fatty acid and leptin in hepatocytes and adipocytes in normal and genetically obese rats. Eur J Biochem. 1999;260:505–11.

    Article  CAS  PubMed  Google Scholar 

  54. Moustaïd N, Beyer RS, Sul HS. Identification of an insulin response element in the fatty acid synthase promoter. J Biol Chem. 1994;269:5629–34.

    Article  PubMed  Google Scholar 

  55. Fukuda H, Iritani N, Katsurada A, Noguchi T. Insulin/glucose-, pyruvate- and polyunsaturated fatty acid-responsive region(s) of rat fatty acid synthase gene promoter. Biochem Mol Biol Int. 1996;38:987–96.

    CAS  PubMed  Google Scholar 

  56. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA. 2003;100:7265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig. 2006;116:1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G, et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab. 2008;93:3215–21.

    Article  CAS  PubMed  Google Scholar 

  59. Seyyedi J, Alizadeh S. Effect of surgically induced weight loss on biomarkers of endothelial dysfunction: a systematic review and meta-analysis. Obes Surg. 2020;30:3549–60.

    Article  PubMed  Google Scholar 

  60. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3:1020–7.

    Article  CAS  PubMed  Google Scholar 

  61. Mardinoglu A, Heiker JT, Gartner D, Bjornson E, Schon MR, Flehmig G, et al. Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue. Sci Rep. 2015;5:14841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ando T, Nishimura M, Oka Y. Decitabine (5-Aza-2’-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia. 2000;14:1915–20.

    Article  CAS  PubMed  Google Scholar 

  63. Pipaon C, Real PJ, Fernandez-Luna JL. Defective binding of transcriptional repressor ZEB via DNA methylation contributes to increased constitutive levels of p73 in Fanconi anemia cells. FEBS Lett. 2005;579:4610–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors received medical writing support from Luis Francisco García-Fernández, Ph.D. The study was funded by Instituto de Salud Carlos III, Spain (Grant no. PI12/00448).

Author information

Authors and Affiliations

Authors

Contributions

Study design: JMB, MC, and ET. Execution of the experimental model and sampling: MC, ET, and MB. Biomolecular studies: MJ. Analysis and interpretation of results: SP, JT, PM, and AC. Writing of the preliminary draft: MC and JMB. Critical revision of the manuscript: JMB, SP, and PM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to José M. Balibrea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremades, M., Talavera-Urquijo, E., Beisani, M. et al. Transcriptional and epigenetic changes after dietary and surgical weight loss interventions in an animal model of obesity. Int J Obes 48, 103–110 (2024). https://doi.org/10.1038/s41366-023-01395-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01395-1

Search

Quick links