Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical Research

Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice

Abstract

Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might ‘compete’ with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peripheral CB1 blockers induce hypophagia by likely acting at the level of the vagus nerve.
Fig. 2: The prolonged use of peripheral CB1 blockers may lead to brain leakage in obese patients having alterations in the blood-brain barrier.

Similar content being viewed by others

References

  1. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  2. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–4.

    Article  CAS  PubMed  Google Scholar 

  3. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International union of pharmacology. XXVII. classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.

    Article  CAS  PubMed  Google Scholar 

  4. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.

    Article  CAS  PubMed  Google Scholar 

  5. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83–90.

    Article  CAS  PubMed  Google Scholar 

  6. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.

    Article  CAS  PubMed  Google Scholar 

  7. Piazza PV, Cota D, Marsicano G. The CB1 receptor as the cornerstone of exostasis. Neuron. 2017;93:1252–74.

    Article  CAS  PubMed  Google Scholar 

  8. Quarta C, Mazza R, Obici S, Pasquali R, Pagotto U. Energy balance regulation by endocannabinoids at central and peripheral levels. Trends Mol Med. 2011;17:518–26.

    Article  CAS  PubMed  Google Scholar 

  9. Di Marzo V, Goparaju SK, Wang L, Liu J, Bátkai S, Járai Z, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–5.

    Article  PubMed  Google Scholar 

  10. Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. The Lancet. 2007;370:1706–13.

    Article  CAS  Google Scholar 

  11. Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The endocannabinoid system: pivotal orchestrator of obesity and metabolic disease. Trends Endocrinol Metab. 2015;26:524–37.

    Article  CAS  PubMed  Google Scholar 

  12. Gatta-Cherifi B, Matias I, Vallée M, Tabarin A, Marsicano G, Piazza PV, et al. Simultaneous postprandial deregulation of the orexigenic endocannabinoid anandamide and the anorexigenic peptide YY in obesity. Int J Obes. 2012;36:880–5.

    Article  CAS  Google Scholar 

  13. Monteleone P, Piscitelli F, Scognamiglio P, Monteleone AM, Canestrelli B, Di Marzo V, et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. J. Clin. Endocrinol Metab. 2012;97:E917–924.

    Article  CAS  PubMed  Google Scholar 

  14. Monteleone AM, Di Marzo V, Aveta T, Piscitelli F, Dalle Grave R, Scognamiglio P, et al. Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa. Am J Clin Nutr. 2015;101:262–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fanelli F, Mezzullo M, Belluomo I, Di Lallo VD, Baccini M, Ibarra Gasparini D, et al. Plasma 2-arachidonoylglycerol is a biomarker of age and menopause related insulin resistance and dyslipidemia in lean but not in obese men and women. Mol Metab. 2017;6:406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bordicchia M, Battistoni I, Mancinelli L, Giannini E, Refi G, Minardi D, et al. Cannabinoid CB1 receptor expression in relation to visceral adipose depots, endocannabinoid levels, microvascular damage, and the presence of the Cnr1 A3813G variant in humans. Metab Clin Exp. 2010;59:734–41.

    Article  CAS  PubMed  Google Scholar 

  17. Baye TM, Zhang Y, Smith E, Hillard CJ, Gunnell J, Myklebust J, et al. Genetic variation in cannabinoid receptor 1 (CNR1) is associated with derangements in lipid homeostasis, independent of body mass index. Pharmacogenomics. 2008;9:1647–56.

    Article  CAS  PubMed  Google Scholar 

  18. Sipe JC, Waalen J, Gerber A, Beutler E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int J Obes. 2005;29:755–9.

    Article  CAS  Google Scholar 

  19. Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congy C, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 1994;350:240–4.

    Article  CAS  PubMed  Google Scholar 

  20. Foll BL, Forget B, Aubin H-J, Goldberg SR. Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addiction Biology. 2008;13:239–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Després J-P, Golay A, Sjöström L, Rimonabant in Obesity-Lipids Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med. 2005;353:2121–34.

    Article  PubMed  Google Scholar 

  22. Després JP, Ross R, Boka G, Alméras N, Lemieux I. ADAGIO-lipids investigators. effect of rimonabant on the high-triglyceride/ low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial. Arterioscler Thromb Vasc Biol. 2009;29:416–23.

    Article  PubMed  CAS  Google Scholar 

  23. Hollander PA, Amod A, Litwak LE, Chaudhari U, ARPEGGIO Study Group.Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: the ARPEGGIO trial. Diabetes Care. 2010;33:605–7.

    Article  CAS  PubMed  Google Scholar 

  24. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, RIO-North America Study Group. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-north america: a randomized controlled trial. JAMA. 2006;295:761–75.

    Article  CAS  PubMed  Google Scholar 

  25. Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. The Lancet. 2006;368:1660–72.

    Article  CAS  Google Scholar 

  26. Gómez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci. 2002;22:9612–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Investig. 2003;112:423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong W, et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Investig. 2008;118:3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu YL, Connoley IP, Wilson CA, Stock MJ. Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. Int J Obes. 2005;29:183–7.

    Article  CAS  Google Scholar 

  30. Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012;16:167–79.

    Article  CAS  PubMed  Google Scholar 

  31. Chorvat RJ, Berbaum J, Seriacki K, McElroy JF. JD-5006 and JD-5037: peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg Med Chem Lett. 2012;22:6173–80.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Godlewski G, Jourdan T, Liu Z, Cinar R, Xiong K, et al. Cannabinoid-1 receptor antagonism improves glycemic control and increases energy expenditure through sirtuin-1/mechanistic target of RAPAMYCIN complex 2 and 5’adenosine monophosphate-activated protein kinase signaling. Hepatology. 2019;69:1535–48.

    Article  CAS  PubMed  Google Scholar 

  33. Cinar R, Godlewski G, Liu J, Tam J, Jourdan T, Mukhopadhyay B, et al. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology. 2014;59:143–53.

    Article  CAS  PubMed  Google Scholar 

  34. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med. 2013;19:1132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G, et al. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci USA. 2014;111:E5420–5428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Udi S, Hinden L, Ahmad M, Drori A, Iyer MR, Cinar R, et al. Dual inhibition of cannabinoid-1 receptor and iNOS attenuates obesity-induced chronic kidney disease. Br J Pharmacol. 2019. https://doi.org/10.1111/bph.14849.

  37. Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, et al. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight. 2016;1:e87336.

  38. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15:367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Myers MG. Leptin keeps working, even in obesity. Cell Metab. 2015;21:791–2.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019;30:706–19.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F, et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol. 2003;63:908–14.

    Article  CAS  PubMed  Google Scholar 

  42. Mantzoros CS, Qu D, Frederich RC, Susulic VS, Lowell BB, Maratos-Flier E, et al. Activation of beta(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Diabetes. 1996;45:909–14.

    Article  CAS  PubMed  Google Scholar 

  43. Tam J, Szanda G, Drori A, Liu Z, Cinar R, Kashiwaya Y, et al. Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling. Mol Metab. 2017;6:1113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peters JH, Ritter RC, Simasko SM. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1544–1549.

    Article  CAS  PubMed  Google Scholar 

  45. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, et al. Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol. 2010;518:3065–85.

    Article  PubMed  CAS  Google Scholar 

  47. Palma-Chavez A, Konar-Nié M, Órdenes P, Maurelia F, Elizondo-Vega R, Oyarce K, et al. Glucose increase DAGLα levels in tanycytes and Its inhibition alters orexigenic and anorexigenic neuropeptides expression in response to glucose. Front Endocrinol. 2019;10.

  48. Morozov YM, Koch M, Rakic P, Horvath TL. Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus. Mol Metab. 2017;6:374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsiao WC, Shia KS, Wang YT, Yeh YN, Chang CP, Lin Y, et al. A novel peripheral cannabinoid receptor 1 antagonist, BPR0912, reduces weight independently of food intake and modulates thermogenesis. Diabetes Obes Metab. 2015;17:495–504.

    Article  CAS  PubMed  Google Scholar 

  50. Vijayakumar RS, Lin Y, Shia KS, Yeh YN, Hsieh WP, Hsiao WC, et al. Induction of fatty acid oxidation resists weight gain, ameliorates hepatic steatosis and reduces cardiometabolic risk factors. Int J Obes. 2012;36:999–1006.

    Article  CAS  Google Scholar 

  51. Han JH, Shin H, Park JY, Rho JG, Son DH, Kim KW, et al. A novel peripheral cannabinoid 1 receptor antagonist, AJ5012, improves metabolic outcomes and suppresses adipose tissue inflammation in obese mice. FASEB J. 2019;33:4314–26.

    Article  CAS  PubMed  Google Scholar 

  52. Han JH, Shin H, Rho JG, Kim JE, Son DH, Yoon J, et al. Peripheral cannabinoid 1 receptor blockade mitigates adipose tissue inflammation via NLRP3 inflammasome in mouse models of obesity. Diabetes Obes Metab. 2018;20:2179–89.

    Article  CAS  PubMed  Google Scholar 

  53. Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3–independent mechanisms. Nat Med. 2008;14:667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quarta C, Bellocchio L, Mancini G, Mazza R, Cervino C, Braulke LJ, et al. CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance. Cell Metab. 2010;11:273–85.

    Article  CAS  PubMed  Google Scholar 

  55. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev. 2006;27:73–100.

    Article  CAS  PubMed  Google Scholar 

  56. Porcella A, Marchese G, Casu MA, Rocchitta A, Lai ML, Gessa GL, et al. Evidence for functional CB1 cannabinoid receptor expressed in the rat thyroid. Eur J Endocrinol. 2002;147:255–61.

    Article  CAS  PubMed  Google Scholar 

  57. da Veiga MA, Fonseca Bloise F, Costa-E-Sousa RH, Souza LL, Almeida NA, Oliveira KJ, et al. Acute effects of endocannabinoid anandamide and CB1 receptor antagonist, AM251 in the regulation of thyrotropin secretion. J Endocrinol. 2008;199:235–42.

    Article  PubMed  CAS  Google Scholar 

  58. Mullur R, Liu Y-Y, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Investig. 2017;127:4148–62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mendizabal-Zubiaga J, Melser S, Bénard G, Ramos A, Reguero L, Arrabal S, et al. Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration. Front Physiol. 2016;7:476.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cavuoto P, McAinch AJ, Hatzinikolas G, Cameron-Smith D, Wittert GA. Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol Cell Endocrinol. 2007;267:63–69.

    Article  CAS  PubMed  Google Scholar 

  62. DiPatrizio NV. Is fat taste ready for primetime? Physiol Behav. 2014;136:145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. DiPatrizio NV, Astarita G, Schwartz G, Li X, Piomelli D. Endocannabinoid signal in the gut controls dietary fat intake. Proc Natl Acad Sci USA. 2011;108:12904–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. González-Mariscal I, Egan JM. Endocannabinoids in the Islets of Langerhans: the ugly, the bad, and the good facts. Am J Physiol Endocrinol Metab. 2018;315:E174–E179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. DiPatrizio NV, Joslin A, Jung K-M, Piomelli D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J. 2013;27:2513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab. 2015;4:437–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Matthews JM, McNally JJ, Connolly PJ, Xia M, Zhu B, Black S, et al. Tetrahydroindazole derivatives as potent and peripherally selective cannabinoid-1 (CB1) receptor inverse agonists. Bioorg Med Chem Lett. 2016;26:5346–9.

    Article  CAS  PubMed  Google Scholar 

  68. Liu J, Zhou L, Xiong K, Godlewski G, Mukhopadhyay B, Tam J, et al. Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology. 2012;142:1218–28.e1.

    Article  CAS  PubMed  Google Scholar 

  69. González-Mariscal I, Krzysik-Walker SM, Doyle ME, Liu QR, Cimbro R, Santa-Cruz Calvo S, et al. Human CB1 receptor isoforms, present in hepatocytes and β-cells, are involved in regulating metabolism. Sci Rep. 2016;6:33302.

  70. Lynch CJ, Zhou Q, Shyng SL, Heal DJ, Cheetham SC, Dickinson K, et al. Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 KATP channels. Am J Physiol Endocrinol Metab. 2011;302:E540–E551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Amor AJ, Perea V. Dyslipidemia in nonalcoholic fatty liver disease. Curr Opin Endocrinol Diabetes Obes. 2019;26:103–8.

    Article  CAS  PubMed  Google Scholar 

  72. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Bátkai S, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Investig. 2005;115:1298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab. 2012;23:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iyer MR, Cinar R, Katz A, Gao M, Erdelyi K, Jourdan T, et al. Design, synthesis, and biological evaluation of novel, non-brain-penetrant, hybrid cannabinoid CB1R inverse agonist/inducible nitric oxide synthase (iNOS) inhibitors for the treatment of liver fibrosis. J Med Chem. 2017;60:1126–41.

    Article  CAS  PubMed  Google Scholar 

  75. Zelber-Sagi S, Azar S, Nemirovski A, Webb M, Halpern Z, Shibolet O, et al. Serum levels of endocannabinoids are independently associated with nonalcoholic fatty liver disease. Obesity. 2017;25:94–101.

    Article  CAS  PubMed  Google Scholar 

  76. Westerbacka J, Kotronen A, Fielding BA, Wahren J, Hodson L,Perttilä, et al. Splanchnic balance of free fatty acids, endocannabinoids, and lipids in subjects with nonalcoholic fatty liver disease. Gastroenterology. 2010;139:1961–71.e1.

    Article  CAS  PubMed  Google Scholar 

  77. Tam J. The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Basic Clin Physiol Pharmacol. 2016;27:267–76.

    Article  CAS  PubMed  Google Scholar 

  78. Udi S, Hinden L, Earley B, Drori A, Reuveni N, Hadar R, et al. Proximal tubular cannabinoid-1 receptor regulates obesity-induced CKD. J Am Soc Nephrol. 2017;28:3518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marks J, Carvou NJC, Debnam ES, Srai SK, Unwin RJ. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol. 2003;553:137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Larkins RG, Dunlop ME. The link between hyperglycaemia and diabetic nephropathy. Diabetologia. 1992;35:499–504.

    Article  CAS  PubMed  Google Scholar 

  81. Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, et al. Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. JASN. 2018;29:434–48.

    Article  CAS  PubMed  Google Scholar 

  82. Tam J, Hinden L, Drori A, Udi S, Azar S, Baraghithy S. The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur J Intern Med. 2018;49:23–29.

    Article  CAS  PubMed  Google Scholar 

  83. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–76.

    Article  PubMed  Google Scholar 

  84. Amato G, Manke A, Wiethe R, Vasukuttan V, Snyder R, Yueh YL, et al. Functionalized 6-(Piperidin-1-yl)-8,9-diphenyl purines as peripherally restricted inverse agonists of the CB1 receptor. J Med Chem. 2019;62:6330–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chang CP, Wu CH, Song JS, Chou MC, Wong YC, Lin Y, et al. Discovery of 1-(2,4-dichlorophenyl)-N-(piperidin-1-yl)-4-((pyrrolidine-1-sulfonamido)methyl)-5-(5-((4-(trifluoromethyl)phenyl)ethynyl)thiophene-2-yl)-1H-pyrazole-3-carboxamide as a novel peripherally restricted cannabinoid-1 receptor antagonist with significant weight-loss efficacy in diet-induced obese mice. J Med Chem. 2013;56:9920–33.

    Article  CAS  PubMed  Google Scholar 

  86. Receveur JM, Murray A, Linget JM, Nørregaard PK, Cooper M, Bjurling E, et al. Conversion of 4-cyanomethyl-pyrazole-3-carboxamides into CB1 antagonists with lowered propensity to pass the blood–brain-barrier. Bioorg Med Chem Lett. 2010;20:453–7.

    Article  CAS  PubMed  Google Scholar 

  87. Takano A, Gulyás B, Varnäs K, Little PB, Noerregaard PK, Jensen NO, et al. Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: a PET study. Synapse. 2014;68:89–97.

    Article  CAS  PubMed  Google Scholar 

  88. Son MH, Kim HD, Chae YN, Kim MK, Shin CY, Ahn GJ, et al. Peripherally acting CB1-receptor antagonist: the relative importance of central and peripheral CB1 receptors in adiposity control. Int J Obes. 2010;34:547–56.

    Article  CAS  Google Scholar 

  89. Han JH, Shin H, Park JY, Rho JG, Son DH, Kim KW, et al. A novel peripheral cannabinoid 1 receptor antagonist, AJ5012, improves metabolic outcomes and suppresses adipose tissue inflammation in obese mice. FASEB J. 2018;33:4314–26.

    Article  PubMed  Google Scholar 

  90. Klumpers LE, Fridberg M, de Kam ML, Little PB, Jensen NO, Kleinloog HD, et al. Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects. Br J Clin Pharmacol. 2013;76:846–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kale VP, Gibbs S, Taylor JA, Zmarowski A, Novak J, Patton K, et al. Preclinical toxicity evaluation of JD5037, a peripherally restricted CB1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis. Regul Toxicolo Pharmacol. 2019;109:104483.

    Article  CAS  Google Scholar 

  92. Ziegler CG, Mohn C, Lamounier-Zepter V, Rettori V, Bornstein SR, Krug AW, et al. Expression and function of endocannabinoid receptors in the human adrenal cortex. Horm Metab Res. 2010;42:88–92.

    Article  CAS  PubMed  Google Scholar 

  93. Niederhoffer N, Hansen HH, Fernandez-Ruiz JJ, Szabo B. Effects of cannabinoids on adrenaline release from adrenal medullary cells. Br J Pharmacol. 2001;134:1319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bellocchio L, Soria-Gómez E, Quarta C, Metna-Laurent M, Cardinal P, Binder E, et al. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. PNAS. 2013;110:4786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. LoVerme J, Duranti A, Tontini A, Spadoni G, Mor M, Rivara S, et al. Synthesis and characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice. Bioorg Med Chem Lett. 2009;19:639–43.

    Article  CAS  PubMed  Google Scholar 

  96. Hånell A, Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Front Behav Neurosci. 2014;8:252.

    PubMed  PubMed Central  Google Scholar 

  97. Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 with limited penetrance to the brain shows reduced fear-promoting effects in mice. Front Pharmacol. 2019;10:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gorzalka BB, Morrish AC, Hill MN. Endocannabinoid modulation of male rat sexual behavior. Psychopharmacology. 2008;198:479–86.

    Article  CAS  PubMed  Google Scholar 

  99. Succu S, Mascia MS, Sanna F, Melis T, Argiolas A, Melis MR. The cannabinoid CB1 receptor antagonist SR 141716A induces penile erection by increasing extra-cellular glutamic acid in the paraventricular nucleus of male rats. Behav Brain Res. 2006;169:274–81.

    Article  CAS  PubMed  Google Scholar 

  100. Gorzalka BB, Hill MN, Chang SCH. Male–female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav. 2010;58:91–99.

    Article  CAS  PubMed  Google Scholar 

  101. Lynn B, Gee A, Zhang L, Pfaus JG. Effects of cannabinoids on female sexual function. Sex Med Rev. 2020;8:18–27.

    Article  PubMed  Google Scholar 

  102. Pacher P, Mukhopadhyay P, Mohanraj R, Godlewski G, Bátkai S, Kunos G. Modulation of the endocannabinoid system in cardiovascular disease. Hypertension. 2008;52:601–7.

    Article  CAS  PubMed  Google Scholar 

  103. Silvani A, Berteotti C, Bastianini S, Cohen G, Lo Martire V, Mazza R, et al. Cardiorespiratory anomalies in mice lacking CB1 cannabinoid receptors. PLoS ONE. 2014;9:e100536.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Skrapari I, Tentolouris N, Perrea D, Bakoyiannis C, Papazafiropoulou A, Katsilambros N. Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity. Obesity. 2007;15:1685–93.

    Article  PubMed  Google Scholar 

  105. Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci. 2019;76:1341–63.

    Article  CAS  PubMed  Google Scholar 

  106. Massa F, Monory K. Endocannabinoids and the gastrointestinal tract. J Endocrinol Investig. 2006;29:47–57.

    CAS  Google Scholar 

  107. Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;14:12–24.

    Article  CAS  PubMed  Google Scholar 

  108. Christou GA, Katsiki N, Blundell J, Fruhbeck G, Kiortsis DN. Semaglutide as a promising antiobesity drug. Obes Rev. 2019;20:805–15.

    Article  CAS  PubMed  Google Scholar 

  109. Marcotte E, Chand B. Management and prevention of surgical and nutritional complications after bariatric surgery. Surg Clin North Am. 2016;96:843–56.

    Article  PubMed  Google Scholar 

  110. Fanelli F, Di Lallo VD, Belluomo I, De Iasio R, Baccini M, Casadio E, et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J Lipid Res. 2012;53:481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Müller TD, Clemmensen C, Finan B, DiMarchi RD, Tschöp MH. Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol Rev. 2018;70:712–46.

    Article  PubMed  CAS  Google Scholar 

  112. González-Mariscal I, Krzysik-Walker SM, Kim W, Rouse M, Egan JM. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice. Mol Cell Endocrinol. 2016;423:1–10.

    Article  PubMed  CAS  Google Scholar 

  113. Patel KN, Joharapurkar AA, Patel V, Kshirsagar SG, Bahekar R, Srivastava BK, et al. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice. Can J Physiol Pharmacol. 2014;92:975–83.

    Article  CAS  PubMed  Google Scholar 

  114. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature. 2017;547:468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Quarta C, Clemmensen C, Zhu Z, Yang B, Joseph SS, Lutter D, et al. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab. 2017;26:620–32.e6.

    Article  CAS  PubMed  Google Scholar 

  116. Cluny NL, Vemuri VK, Chambers AP, Limebeer CL, Bedard H, Wood JT, et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br J Pharmacol. 2010;161:629–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Amato GS, Manke A, Harris DL, Wiethe RW, Vasukuttan V, Snyder RW, et al. Blocking alcoholic steatosis in mice with a peripherally restricted purine antagonist of the Type 1 cannabinoid receptor. J Med Chem. 2018;61:4370–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang YM, Greco MN, Macielag MJ, Teleha CA, DesJarlais RL, Tang Y, et al. 6-Benzhydryl-4-amino-quinolin-2-ones as potent cannabinoid Type 1 (CB1) receptor inverse agonists and chemical modifications for peripheral selectivity. J Med Chem. 2018;61:10276–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CQ is supported by INSERM, the French Society of Diabetes (SFD), the French Society of Endocrinology (SFE), the French Society of Nutrition (SFN). DC is supported by INSERM, Nouvelle Aquitaine Region, Labex BRAIN ANR-10-LABX-43, ANR-10-EQX-008-1 OPTOPATH, ANR-17-CE14-0007 BABrain, and ANR-18-CE14-0029 Mitobesity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carmelo Quarta or Daniela Cota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quarta, C., Cota, D. Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. Int J Obes 44, 2179–2193 (2020). https://doi.org/10.1038/s41366-020-0577-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0577-8

This article is cited by

Search

Quick links