Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

“IGT-like” status in normoglucose tolerant obese children and adolescents: the additive role of glucose profile morphology and 2-hours glucose concentration during the oral glucose tolerance test

Abstract

Objective

To assess whether combining glucose shape and 2-h glucose concentration during an oral glucose tolerance test (OGTT) may help identifying normal glucose tolerant obese children/adolescents with an impaired glucose tolerant (IGT)-like metabolic profile in term of insulin sensitivity (Matsuda index) and β-cell function (disposition index: DI).

Subjects, methods, and main outcome measure

In total, 654 non-diabetic obese children/adolescents underwent a 2 h OGTT. The whole population was classified according to 2-hour plasma glucose ( < 100, 100–119, 120–139, 140–200 mg/dL) and glucose shape (monophasic or biphasic). Monophasic morphology was characterized by an increase in OGTT glucose concentration followed by a decline of at least 4.5 mg/dL, a biphasic response was defined as a decrease in glucose after an initial increase, followed by a second increase of ≥ 4.5 mg/dL. A subset of 69 participants had also a prolonged OGTT to estimate β-cell function in “biphasic” versus “monophasic” patients.

Results

Matsuda index and DI decreased across 2-h glucose categories (both p < 0.001) and were lower in monophasic compared with biphasic children, independently of 2-h glucose category (both p < 0.001, both p for glucose category×shape interaction > 0.05). Normal glucose tolerant children with 2-h glucose of 120–139 mg/dl and monophasic glucose shape did not differ from IGT children, as regards Matsuda index and DI (both p > 0.05). Among children undergoing a prolonged OGTT, those with a monophasic glucose shape had worse β-cell function, modeled as proportional control, than those with a biphasic shape (p = 0.031).

Conclusions

A monophasic OGTT glucose shape is associated with unfavorable glucose metabolism independently of 2-h glucose concentration. Children combining monophasic shape and normal-high 2-h glucose have an IGT-like glucose metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Morandi A, Maschio M, Marigliano M, Miraglia Del Giudice E, Moro B, Peverelli P, et al. Screening for impaired glucose tolerance in obese children and adolescents: a validation and implementation study. Pediatr Obes. 2014;9:17–25.

    Article  CAS  Google Scholar 

  2. Körner A, Wiegand S, Hungele A, Tuschy S, Otto KP, l’Allemand-Jander D, et al. Longitudinal multicenter analysis on the course of glucose metabolism in obese children. Int J Obes (Lond). 2013;37:931–6.

    Article  Google Scholar 

  3. Weiss R, Taksali SE, Tamborlane WV, Burgert TS, Savoye M, Caprio S. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care. 2005;28:902–9.

    Article  Google Scholar 

  4. Yeckel CW, Taksali SE, Dziura J, Weiss R, Burgert TS, Sherwin RS, et al. The normal glucose tolerance continuum in obese youth: evidence for impairment in beta-cell function independent of insulin resistance. J Clin Endocrinol Metab. 2005;90:747–54.

    Article  CAS  Google Scholar 

  5. Burns SF, Bacha F, Lee SJ, Tfayli H, Gungor N, Arslanian SA. Declining β-cell function relative to insulin sensitivity with escalating OGTT 2-h glucose concentrations in the nondiabetic through the diabetic range in overweight youth. Diabetes Care. 2011;34:2033–40.

    Article  Google Scholar 

  6. Giannini C, Weiss R, Cali A, Bonadonna R, Santoro N, Pierpont B, et al. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes. 2012;61:606–14.

    Article  CAS  Google Scholar 

  7. Tschritter O, Fritsche A, Shirkavand F, Machicao F, Häring H, Stumvoll M. Assessing the shape of the glucose curve during an oral glucose tolerance test. Diabetes Care. 2003;26:1026–33.

    Article  CAS  Google Scholar 

  8. Nolfe G, Spreghini MR, Sforza RW, Morino G, Manco M. Beyond the morphology of the glucose curve following an oral glucose tolerance test in obese youth. Eur J Endocrinol. 2012;166:107–14.

    Article  CAS  Google Scholar 

  9. Kim JY, Coletta DK, Mandarino LJ, Shaibi GQ. Glucose response curve and type 2 diabetes risk in Latino adolescents. Diabetes Care. 2012;35:1925–30.

    Article  CAS  Google Scholar 

  10. Kim JY, Michaliszyn SF, Nasr A, Lee S, Tfayli H, Hannon T, et al. The shape of the glucose response curve during an oral glucose tolerance test heralds biomarkers of type 2 diabetes risk in obese youth. Diabetes Care. 2016;39:1431–9.

    Article  CAS  Google Scholar 

  11. Abdul-Ghani MA, Lyssenko V, Tuomi T, Defronzo RA, Groop L. The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes Metab Res Rev. 2010;26:280–6.

    Article  CAS  Google Scholar 

  12. De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.

    Article  Google Scholar 

  13. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2017;40:S11–S24.

    Article  Google Scholar 

  14. Harrington DM, Staiano AE, Broyles ST, Gupta AK, Katzmarzyk PT. Waist circumference measurement site does not affect relationships with visceral adiposity and cardiometabolic risk factors in children. Pediatr Obes. 2013;8:199–206.

    Article  CAS  Google Scholar 

  15. Maffeis C, Banzato C, Talamini G. Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J Pediatr. 2008;152:207–13.

    Article  Google Scholar 

  16. Phillips DI, Clark PM, Hales CN, Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet Med. 1994;11:286–92.

    Article  CAS  Google Scholar 

  17. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–70.

    Article  CAS  Google Scholar 

  18. Yeckel CW, Weiss R, Dziura J, Taksali SE, Dufour S, Burgert TS, et al. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescent. J Clin Endocrinol Metab. 2004;89:1096–101.

    Article  CAS  Google Scholar 

  19. Bonadonna RC, Heise T, Arbet-Engels C, Kapitza C, Avogaro A, Grimsby J, et al. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab. 2010;95:5028e36.

    Article  Google Scholar 

  20. Bonetti S, Trombetta M, Boselli ML, Turrini F, Malerba G, Trabetti E, et al. Variants of GCKR affect both beta-cell and kidney function in patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study 2. Diabetes Care. 2011;34:1205e10.

    Article  Google Scholar 

  21. Navalesi R, Pilo A, Ferrannini E. Kinetic analysis of plasma insulin disappearance in nonketotic diabetic patients and in normal subjects. A tracer study with 125I-insulin. J Clin Invest. 1978;61:197–208.

    Article  CAS  Google Scholar 

  22. Michaliszyn SF, Mari A, Lee S, Bacha F, Tfayli H, Farchoukh L, et al. β-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 iabetes. Diabetes. 2014;63:3846–55.

    Article  CAS  Google Scholar 

  23. Kay JP, Alemzadeh R, Langley G, D’Angelo L, Smith P, Holshouser S. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism. 2001;50:1457–61.

    Article  CAS  Google Scholar 

  24. Reinehr T, Wabitsch M, Kleber M, de Sousa G, Denzer C, Toschke AM. Parental diabetes, pubertal stage, and extreme obesity are the main risk factors for prediabetes in children and adolescents: a simple risk score to identify children at risk for prediabetes. Pediatr Diabetes. 2009;10:395–400.

    Article  Google Scholar 

  25. Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes. 2001;50:2444–50.

    Article  CAS  Google Scholar 

  26. Libman IM, Barinas-Mitchell E, Bartucci A, Robertson R, Arslanian S. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008;93:4231–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are sincerely indebted to the children and adolescents who participated in the study and to their families. We thank the dedicated staff of the Pediatric Diabetes and Metabolic Disorders Unit of the University Hospital in Verona for their support during the clinical study. Supported by grants (FURMAF2015, FURMAF2016) from the University of Verona to CM and by grants from University of Parma to RCB.

Author information

Authors and Affiliations

Authors

Contributions

FO, CZ, and AM researched and analyzed data and wrote the manuscript. MC researched data and discussed the manuscript. MLB carried out mathematical modeling of the data. EF researched data. RCB developed the mathematical models, supervised mathematical modeling, edited the manuscript, and provided substantial contribution to the overall discussion. CM designed the study, researched data, co-wrote, and edited the manuscript. CM is the guarantor of this work and, as such, had full access to all the data in the study and take responsibility for the integrity and the accuracy of the data analysis.

Corresponding author

Correspondence to Claudio Maffeis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivieri, F., Zusi, C., Morandi, A. et al. “IGT-like” status in normoglucose tolerant obese children and adolescents: the additive role of glucose profile morphology and 2-hours glucose concentration during the oral glucose tolerance test. Int J Obes 43, 1363–1369 (2019). https://doi.org/10.1038/s41366-018-0297-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0297-5

Search

Quick links