Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A platform for interrogating cancer-associated p53 alleles

Subjects

A Corrigendum to this article was published on 19 December 2016

Abstract

p53 is the most frequently mutated gene in human cancer. Compelling evidence argues that full transformation involves loss of growth suppression encoded by wild-type p53 together with poorly understood oncogenic activity encoded by missense mutations. Furthermore, distinguishing disease alleles from natural polymorphisms is an important clinical challenge. To interrogate the genetic activity of human p53 variants, we leveraged the Drosophila model as an in vivo platform. We engineered strains that replace the fly p53 gene with human alleles, producing a collection of stocks that are, in effect, ‘humanized’ for p53 variants. Like the fly counterpart, human p53 transcriptionally activated a biosensor and induced apoptosis after DNA damage. However, all humanized strains representing common alleles found in cancer patients failed to complement in these assays. Surprisingly, stimulus-dependent activation of hp53 occurred without stabilization, demonstrating that these two processes can be uncoupled. Like its fly counterpart, hp53 formed prominent nuclear foci in germline cells but cancer-associated p53 variants did not. Moreover, these same mutant alleles disrupted hp53 foci and inhibited biosensor activity, suggesting that these properties are functionally linked. Together these findings establish a functional platform for interrogating human p53 alleles and suggest that simple phenotypes could be used to stratify disease variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  2. Vousden KH, Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  3. Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013; 3: 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  4. Soussi T . p53 alterations in human cancer: more questions than answers. Oncogene 2007; 26: 2145–2156.

    Article  CAS  PubMed  Google Scholar 

  5. Quon KC, Berns A . Haplo-insufficiency? Let me count the ways. Genes Dev 2001; 15: 2917–2921.

    Article  CAS  PubMed  Google Scholar 

  6. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  7. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  8. Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U . Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 2013; 20: 898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freed-Pastor WA, Prives C . Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139: 1327–1341.

    Article  PubMed  Google Scholar 

  11. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148: 244–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  PubMed  Google Scholar 

  13. Joerger AC, Fersht AR . Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 2007; 26: 2226–2242.

    Article  CAS  PubMed  Google Scholar 

  14. Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR . Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci USA 1999; 96: 8438–8442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lubin R, Schlichtholz B, Teillaud JL, Garay E, Bussel A, Wild CP . p53 antibodies in patients with various types of cancer: assay, identification, and characterization. Clin Cancer Res 1995; 1: 1463–1469.

    CAS  PubMed  Google Scholar 

  16. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 2008; 22: 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abrams JM, White K, Fessler LI, Steller H . Programmed cell death during Drosophila embryogenesis. Development 1993; 117: 29–43.

    CAS  PubMed  Google Scholar 

  18. Lu WJ, Chapo J, Roig I, Abrams JM . Meiotic recombination provokes functional activation of the p53 regulatory network. Science 2010; 328: 1278–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wylie A, Lu WJ, D'Brot A, Buszczak M, Abrams JM . p53 activity is selectively licensed in the Drosophila stem cell compartment. Elife 2014; 3: e01530.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akdemir F, Christich A, Sogame N, Chapo J, Abrams JM . p53 directs focused genomic responses in Drosophila. Oncogene 2007; 26: 5184–5193.

    Article  CAS  PubMed  Google Scholar 

  21. Brooks CL, Gu W . New insights into p53 activation. Cell Res 2010; 20: 614–621.

    Article  CAS  PubMed  Google Scholar 

  22. Monk AC, Abud HE, Hime GR . Dmp53 is sequestered to nuclear bodies in spermatogonia of Drosophila melanogaster. Cell Tissue Res 2012; 350: 385–394.

    Article  CAS  PubMed  Google Scholar 

  23. Liu JL, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ et al. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell 2009; 20: 1661–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Godfrey AC, White AE, Tatomer DC, Marzluff WF, Duronio RJ . The Drosophila U7 snRNP proteins Lsm10 and Lsm11 are required for histone pre-mRNA processing and play an essential role in development. RNA 2009; 15: 1661–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoborg T, Rickels R, Barrios J, Labrador M . Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. J Cell Biol 2013; 202: 261–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tritarelli A, Oricchio E, Ciciarello M, Mangiacasale R, Palena A, Lavia P et al. p53 localization at centrosomes during mitosis and postmitotic checkpoint are ATM-dependent and require serine 15 phosphorylation. Mol Biol Cell 2004; 15: 3751–3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lehembre F, Badenhorst P, Muller S, Travers A, Schweisguth F, Dejean A . Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol Cell Biol 2000; 20: 1072–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mauri F, McNamee LM, Lunardi A, Chiacchiera F, Del Sal G, Brodsky MH et al. Modification of Drosophila p53 by SUMO modulates its transactivation and pro-apoptotic functions. J Biol Chem 2008; 283: 20848–20856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Milner J, Medcalf EA . Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991; 65: 765–774.

    Article  CAS  PubMed  Google Scholar 

  30. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 2003; 100: 8424–8429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei QX, van der Hoeven F, Hollstein M, Odell AF . Efficient introduction of specific TP53 mutations into mouse embryonic fibroblasts and embryonic stem cells. Nat Protoc 2012; 7: 1145–1160.

    Article  CAS  PubMed  Google Scholar 

  32. Schumacher B, Hanazawa M, Lee MH, Nayak S, Volkmann K, Hofmann ER et al. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 2005; 120: 357–368.

    Article  CAS  PubMed  Google Scholar 

  33. Yamaguchi M, Hirose F, Inoue YH, Shiraki M, Hayashi Y, Nishi Y et al. Ectopic expression of human p53 inhibits entry into S phase and induces apoptosis in the Drosophila eye imaginal disc. Oncogene 1999; 18: 6767–6775.

    Article  CAS  PubMed  Google Scholar 

  34. Lu WJ, Amatruda JF, Abrams JM . p53 ancestry: gazing through an evolutionary lens. Nat Rev Cancer 2009; 9: 758–762.

    Article  CAS  PubMed  Google Scholar 

  35. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM . Drosophila p53 binds a damage response element at the reaper locus. Cell 2000; 101: 103–113.

    Article  CAS  PubMed  Google Scholar 

  36. Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000; 19: 6185–6195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 2009; 69: 4818–4826.

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7: 285–295.

    Article  CAS  PubMed  Google Scholar 

  39. Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, Braga CA et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 2012; 287: 28152–28162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pagliarini RA, Xu T . A genetic screen in Drosophila for metastatic behavior. Science 2003; 302: 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  41. Abrams JM . Competition and compensation: coupled to death in development and cancer. Cell 2002; 110: 403–406.

    Article  CAS  PubMed  Google Scholar 

  42. Venken KJ, Carlson JW, Schulze KL, Pan H, He Y, Spokony R et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 2009; 6: 431–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ et al. FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 2016; 44: D786–D792.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Melissa O’neal for help cloning constructs for humanized lines and Akash Patel for help with crosses to make humanized lines. We are grateful to Anne Dejean for the dSmt3/dSUMO antibody and to Michael Buszczak for the coilin and lsm11 antibodies. We thank Kate Luby-Phelps, Abhijit Bugde and the Live Cell Imaging Facility at UT Southwestern for help with confocal imaging, deconvolution and Imaris. We also thank Po Chen, Nichole Link, Annika Wylie, Gianella Garcia-Hughes, Mike Buszczak, Robin Hiesinger and Helmut Kramer for discussion, advice and comments. This work was supported by the NIH (GM072124) and (GM115682), the Welch Foundation (I-I865), the Ellison Medical Foundation and CPRIT (RP110076) as well as NRSA (F31 GM108472-03) to Paula Kurtz and NIH (S10 RR029731-01) to Kate Luby-Phelps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Abrams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D'Brot, A., Kurtz, P., Regan, E. et al. A platform for interrogating cancer-associated p53 alleles. Oncogene 36, 286–291 (2017). https://doi.org/10.1038/onc.2016.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.48

This article is cited by

Search

Quick links