Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells

Abstract

Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

DNMT:

DNA methyltransferase

MUC1:

mucin 1

EMT:

epithelial-mesenchymal transition

ECAD:

E-cadherin

LINE-1:

long interspersed nucleotide element-1.

References

  1. Li E, Zhang Y . DNA methylation in mammals. Cold Spring Harb Perspect Biol 2014; 6: a019133.

    Article  Google Scholar 

  2. Easwaran H, Tsai HC, Baylin SB . Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 2014; 54: 716–727.

    Article  CAS  Google Scholar 

  3. Ahuja N, Easwaran H, Baylin SB . Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest 2014; 124: 56–63.

    Article  CAS  Google Scholar 

  4. Pradhan S, Bacolla A, Wells RD, Roberts RJ . Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274: 33002–33010.

    Article  CAS  Google Scholar 

  5. Ko YG, Nishino K, Hattori N, Arai Y, Tanaka S, Shiota K . Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J Biol Chem 2005; 280: 9627–9634.

    Article  CAS  Google Scholar 

  6. Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH et al. Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol 2002; 245: 304–314.

    Article  CAS  Google Scholar 

  7. Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257.

    Article  CAS  Google Scholar 

  8. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002; 22: 480–491.

    Article  CAS  Google Scholar 

  9. Lin RK, Hsu HS, Chang JW, Chen CY, Chen JT, Wang YC . Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer 2007; 55: 205–213.

    Article  Google Scholar 

  10. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y et al. Expression of DNA methyltransferases DNMT1, 3 A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001; 97: 1172–1179.

    Article  CAS  Google Scholar 

  11. Qu Y, Mu G, Wu Y, Dai X, Zhou F, Xu X et al. Overexpression of DNA methyltransferases 1, 3a, and 3b significantly correlates with retinoblastoma tumorigenesis. Am J Clin Pathol 2010; 134: 826–834.

    Article  CAS  Google Scholar 

  12. Bakin AV, Curran T . Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 1999; 283: 387–390.

    Article  CAS  Google Scholar 

  13. Bigey P, Ramchandani S, Theberge J, Araujo FD, Szyf M . Transcriptional regulation of the human DNA methyltransferase (dnmt1) gene. Gene 2000; 242: 407–418.

    Article  CAS  Google Scholar 

  14. Jinawath A, Miyake S, Yanagisawa Y, Akiyama Y, Yuasa Y . Transcriptional regulation of the human DNA methyltransferase 3 A and 3B genes by Sp3 and Sp1 zinc finger proteins. Biochem J 2005; 385: 557–564.

    Article  CAS  Google Scholar 

  15. Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK . Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem 2002; 269: 2961–2970.

    Article  CAS  Google Scholar 

  16. Lin RK, Wang YC . Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci 2014; 4: 46.

    Article  Google Scholar 

  17. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000; 404: 1003–1007.

    Article  CAS  Google Scholar 

  18. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416: 552–556.

    Article  CAS  Google Scholar 

  19. Kufe D . Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 2009; 9: 874–885.

    Article  CAS  Google Scholar 

  20. Kufe D . MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 2013; 32: 1073–1081.

    Article  CAS  Google Scholar 

  21. Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R et al. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 2015; 34: 5187–5197.

    Article  CAS  Google Scholar 

  22. Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S et al. MUC1 oncoprotein activates the IκB kinase β complex and constitutive NF-κB signaling. Nat Cell Biol 2007; 9: 1419–1427.

    Article  CAS  Google Scholar 

  23. Ahmad R, Raina D, Joshi MD, Kawano T, Kharbanda S, Kufe D . MUC1-C oncoprotein functions as a direct activator of the NF-κB p65 transcription factor. Cancer Res 2009; 69: 7013–7021.

    Article  CAS  Google Scholar 

  24. Rajabi H, Alam M, Takahashi H, Kharbanda A, Guha M, Ahmad R et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene 2014; 33: 1680–1689.

    Article  CAS  Google Scholar 

  25. Alam M, Rajabi H, Ahmad R, Jin C, Kufe D . Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget 2014; 5: 2622–2634.

    Article  Google Scholar 

  26. Raina D, Kosugi M, Ahmad R, Panchamoorthy G, Rajabi H, Alam M et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Ther 2011; 10: 806–816.

    Article  CAS  Google Scholar 

  27. Shen N, Yan F, Pang J, Wu LC, Al-Kali A, Litzow MR et al. A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget 2014; 5: 5494–5509.

    PubMed  PubMed Central  Google Scholar 

  28. Berger N, Ben Bassat H, Klein BY, Laskov R . Cytotoxicity of NF-kappaB inhibitors Bay 11-7085 and caffeic acid phenethyl ester to Ramos and other human B-lymphoma cell lines. Exp Hematol 2007; 35: 1495–1509.

    Article  CAS  Google Scholar 

  29. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP . A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004; 32: e38.

    Article  Google Scholar 

  30. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005; 33: 6823–6836.

    Article  CAS  Google Scholar 

  31. Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, Koppen G et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS ONE 2013; 8: e79044.

    Article  Google Scholar 

  32. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2010; 31: 27–36.

    Article  CAS  Google Scholar 

  33. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 2012; 21: 655–667.

    Article  CAS  Google Scholar 

  34. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  Google Scholar 

  35. Rodic N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol 2014; 184: 1280–1286.

    Article  CAS  Google Scholar 

  36. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010; 141: 1253–1261.

    Article  CAS  Google Scholar 

  37. Tubio JM, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 2014; 345: 1251343.

    Article  Google Scholar 

  38. Gnemmi V, Bouillez A, Gaudelot K, Hemon B, Ringot B, Pottier N et al. MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/beta-catenin pathway and interaction with SNAIL promoter. Cancer Lett 2014; 346: 225–236.

    Article  CAS  Google Scholar 

  39. Zrihan-Licht S, Weiss M, Keydar I, Wreschner DH . DNA methylation status of the MUC1 gene coding for a breast-cancer-associated protein. Int J Cancer 1995; 62: 245–251.

    Article  CAS  Google Scholar 

  40. Yamada N, Nishida Y, Tsutsumida H, Hamada T, Goto M, Higashi M et al. MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res 2008; 68: 2708–2716.

    Article  CAS  Google Scholar 

  41. Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 2016; 7: 11756–11769.

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this paper was supported by the National Cancer Institute of the National Institutes of Health under award numbers CA97098 and CA166480, and by the Lung Cancer Research Foundation.

Author contributions

HR proposed the studies, generated the promoter-reporter vectors and performed ChIP, DNA methylation ELISA and MeDIP assays. AT, MA, AB and YS performed ChIP, promoter-reporter and immunoblotting assays. SP performed bioinformatics analysis. DK designed the studies and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kufe.

Ethics declarations

Competing interests

DK holds equity in Genus Oncology and is a consultant to the company. The remaining authors disclosed no potential conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, H., Tagde, A., Alam, M. et al. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene 35, 6439–6445 (2016). https://doi.org/10.1038/onc.2016.180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.180

This article is cited by

Search

Quick links