Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ICAM-2 confers a non-metastatic phenotype in neuroblastoma cells by interaction with α-actinin

Abstract

Progressive metastatic disease is a major cause of mortality for patients diagnosed with multiple types of solid tumors. One of the long-term goals of our laboratory is to identify molecular interactions that regulate metastasis, as a basis for developing agents that inhibit this process. Toward this goal, we recently demonstrated that intercellular adhesion molecule-2 (ICAM-2) converted neuroblastoma (NB) cells from a metastatic to a non-metastatic phenotype, a previously unknown function for ICAM-2. Interestingly, ICAM-2 suppressed metastatic but not tumorigenic potential in preclinical models, supporting a novel mechanism of regulating metastasis. We hypothesized that the effects of ICAM-2 on NB cell phenotype depend on the interaction of ICAM-2 with the cytoskeletal linker protein α-actinin. The goal of the study presented here was to evaluate the impact of α-actinin binding to ICAM-2 on the phenotype of NB tumor cells. We used in silico approaches to examine the likelihood that the cytoplasmic domain of ICAM-2 binds directly to α-actinin. We then expressed variants of ICAM-2 with mutated α-actinin-binding domains, and compared the impact of ICAM-2 and each variant on NB cell adhesion, migration, anchorage-independent growth, co-precipitation with α-actinin and production of localized and disseminated tumors in vivo. The in vitro and in vivo characteristics of cells expressing ICAM-2 variants with modified α-actinin-binding domains differed from cells expressing ICAM-2 wild type (WT) and also from cells that expressed no detectable ICAM-2. Like the WT protein, ICAM-2 variants inhibited cell adhesion, migration and colony growth in vitro. However, unlike the WT protein, ICAM-2 variants did not completely suppress development of disseminated NB tumors in vivo. The data suggest the presence of α-actinin-dependent and α-actinin-independent mechanisms, and indicate that the interaction of ICAM-2 with α-actinin is critical to conferring an ICAM-2-mediated non-metastatic phenotype in NB cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Casasnovas JM, Springer TA, Liu JH, Harrison SC, Wang JH . Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 1997; 387: 312–315.

    Article  CAS  Google Scholar 

  2. Nortamo P, Li R, Renkonen R, Timonen T, Prieto J, Patarroyo M et al. The expression of human intercellular adhesion molecule-2 is refractory to inflammatory cytokines. Eur J Immunol 1991; 21: 2629–2632.

    Article  CAS  Google Scholar 

  3. de Fougerolles AR, Stacker SA, Schwarting R, Springer TA . Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med 1991; 174: 253–267.

    Article  CAS  Google Scholar 

  4. Kotovuori A, Pessa-Morikawa T, Kotovuori P, Nortamo P, Gahmberg CG . ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J Immunol 1999; 162: 6613–6620.

    CAS  Google Scholar 

  5. Yoon KJ, Phelps DA, Bush RA, Remack JS, Billups CA, Khoury JD . ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma. PLoS One 2008; 3: e3629.

    Article  Google Scholar 

  6. Staunton DE, Dustin ML, Springer TA . Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 1989; 339: 61–64.

    Article  CAS  Google Scholar 

  7. Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO et al. Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood 2005; 106: 1636–1643.

    Article  CAS  Google Scholar 

  8. Diacovo TG, deFougerolles AR, Bainton DF, Springer TA . A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest 1994; 94: 1243–1251.

    Article  CAS  Google Scholar 

  9. Hamada K, Shimizu T, Yonemura S, Tsukita S, Hakoshima T . Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J 2003; 22: 502–514.

    Article  CAS  Google Scholar 

  10. Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 1998; 140: 885–895.

    Article  CAS  Google Scholar 

  11. Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O . Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 1998; 273: 21893–21900.

    Article  CAS  Google Scholar 

  12. Heiska L, Kantor C, Parr T, Critchley DR, Vilja P, Gahmberg CG et al. Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to alpha-actinin. J Biol Chem 1996; 271: 26214–26219.

    Article  CAS  Google Scholar 

  13. Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Duijnhoven GC, Grabovsky V et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 2000; 1: 353–357.

    Article  CAS  Google Scholar 

  14. Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140: 1383–1393.

    Article  CAS  Google Scholar 

  15. Honda K, Yamada T, Hayashida Y, Idogawa M, Sato S, Hasegawa F et al. Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology 2005; 128: 51–62.

    Article  CAS  Google Scholar 

  16. Sun CX, Robb VA, Gutmann DH . Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Science 2002; 115: 3991–4000.

    Article  CAS  Google Scholar 

  17. Otey CA, Carpen O . Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 2004; 58: 104–111.

    Article  CAS  Google Scholar 

  18. Liu J, Taylor DW, Taylor KA . A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 2004; 338: 115–125.

    Article  CAS  Google Scholar 

  19. Atkinson RA, Joseph C, Kelly G, Muskett FW, Frenkiel TA, Nietlispach D et al. Ca2+-independent binding of an EF-hand domain to a novel motif in the alpha-actinin-titin complex. Nat Struct Biol 2001; 8: 853–857.

    Article  CAS  Google Scholar 

  20. DeLisser HM, Chilkotowsky J, Yan HC, Daise ML, Buck CA, Albelda SM . Deletions in the cytoplasmic domain of platelet-endothelial cell adhesion molecule-1 (PECAM-1, CD31) result in changes in ligand binding properties. J Cell Biol 1994; 124: 195–203.

    Article  CAS  Google Scholar 

  21. Nishiya T, DeFranco AL . Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem 2004; 279: 19008–19017.

    Article  CAS  Google Scholar 

  22. Pasqualini R, Hemler ME . Contrasting roles for integrin beta 1 and beta 5 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J Cell Biol 1994; 125: 447–460.

    Article  CAS  Google Scholar 

  23. Friedl P, Wolf K . Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362–374.

    Article  CAS  Google Scholar 

  24. Eccles SA, Box C, Court W . Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Ann Rev 2005; 11: 391–421.

    Article  CAS  Google Scholar 

  25. Feduska JM, Garcia PL, Brennan SB, Bu S, Council LN, Yoon KJ . N-glycosylation of ICAM-2 is required for ICAM-2-mediated complete suppression of metastatic potential of SK-N-AS neuroblastoma cells. BMC Cancer 2013; 13: 261.

    Article  CAS  Google Scholar 

  26. Cifone MA, Fidler IJ . Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 1980; 77: 1039–1043.

    Article  CAS  Google Scholar 

  27. Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 2009; 28: 2796–2805.

    Article  CAS  Google Scholar 

  28. Melero I, Gabari I, Corbi AL, Relloso M, Mazzolini G, Schmitz V et al. An anti-ICAM-2 (CD102) monoclonal antibody induces immune-mediated regressions of transplanted ICAM-2-negative colon carcinomas. Cancer Res 2002; 62: 3167–3174.

    CAS  Google Scholar 

  29. Hiraoka N, Yamazaki-Itoh R, Ino Y, Mizuguchi Y, Yamada T, Hirohashi S et al. CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology 2011; 140: 310–321.

    Article  CAS  Google Scholar 

  30. Liu Z, Guo B, Lopez RD . Expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 is critical in determining sensitivity of pancreatic cancer cells to cytolysis by human gammadelta-T cells: implications in the design of gammadelta-T-cell-based immunotherapies for pancreatic cancer. J Gastroenterol Hepatol 2009; 24: 900–911.

    Article  CAS  Google Scholar 

  31. Perez OD, Kinoshita S, Hitoshi Y, Payan DG, Kitamura T, Nolan GP et al. Activation of the PKB/AKT pathway by ICAM-2. Immunity 2002; 16: 51–65.

    Article  CAS  Google Scholar 

  32. Hogg N, Stewart MP, Scarth SL, Newton R, Shaw JM, Law SK et al. A novel leukocyte adhesion deficiency caused by expressed but nonfunctional beta2 integrins Mac-1 and LFA-1. J Clin Invest 1999; 103: 97–106.

    Article  CAS  Google Scholar 

  33. Hynes RO . Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    Article  CAS  Google Scholar 

  34. Yang Y, Jun CD, Liu JH, Zhang R, Joachimiak A, Springer TA et al. Structural basis for dimerization of ICAM-1 on the cell surface. Molecular cell 2004; 14: 269–276.

    Article  CAS  Google Scholar 

  35. Hariharan R, Pillai MR . Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence. Proteins 2008; 71: 1853–1862.

    Article  CAS  Google Scholar 

  36. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 2003; 50: 437–450.

    Article  CAS  Google Scholar 

  37. Eisenberg D, Luthy R, Bowie JU . VERIFY3D: assessment of protein models with three-dimensional profiles. Meth Enzymol 1997; 277: 396–404.

    Article  CAS  Google Scholar 

  38. Tovchigrechko A, Vakser IA . Development and testing of an automated approach to protein docking. Proteins 2005; 60: 296–301.

    Article  CAS  Google Scholar 

  39. Mohamet L, Lea ML, Ward CM . Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One 2010; 5: e12921.

    Article  Google Scholar 

  40. Nyman-Huttunen H, Tian L, Ning L, Gahmberg CG . alpha-Actinin-dependent cytoskeletal anchorage is important for ICAM-5-mediated neuritic outgrowth. J Cell Sci 2006; 119: 3057–3066.

    Article  CAS  Google Scholar 

  41. Morton CL, Iacono L, Hyatt JL, Taylor KR, Cheshire PJ, Houghton PJ et al. Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharmacol 2005; 56: 629–636.

    Article  CAS  Google Scholar 

  42. Garcia PL, Council LN, Christein JD, Arnoletti JP, Heslin MJ et al. Development and histopathological characterization of tumorgraft models of pancreatic ductal adenocarcinoma. PLoS One 2013; 8: e78183.

    Article  CAS  Google Scholar 

  43. Schrodinger LLC . The PyMOL Molecular Graphics System, Version 1.3r1 2010.

  44. Humphries MJ . Cell-substrate adhesion assays. Current Protocols in Cell Biology 2001, 00: 9.1.1. 9.1.11.

    Article  Google Scholar 

  45. Carpen O, Pallai P, Staunton DE, Springer TA . Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol 1992; 118: 1223–1234.

    Article  CAS  Google Scholar 

  46. Otey CA, Vasquez GB, Burridge K, Erickson BW . Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain. J Biol Chem 1993; 268: 21193–21197.

    CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr Mary Danks for her support. We thank Dr Phil Potter for allowing us to use the mouse strain developed in his laboratory. We are also grateful to Joanna Remack and Rebecca Bush for outstanding technical assistance. This work was supported by the University of Alabama at Birmingham-Comprehensive Cancer Center- YSB-New Faculty Development Award (YSB-NFDA: P30 CA013148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K J Yoon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feduska, J., Aller, S., Garcia, P. et al. ICAM-2 confers a non-metastatic phenotype in neuroblastoma cells by interaction with α-actinin. Oncogene 34, 1553–1562 (2015). https://doi.org/10.1038/onc.2014.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.87

This article is cited by

Search

Quick links