Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice

Abstract

To examine the role of telomeric repeat-binding factor 2 (TRF2) in epithelial tumorigenesis, we characterized conditional loss of TRF2 expression in the basal layer of mouse epidermis. These mice exhibit some characteristics of dyskeratosis congenita, a human stem cell depletion syndrome caused by telomere dysfunction. The epidermis in conditional TRF2 null mice exhibited DNA damage response and apoptosis, which correlated with stem cell depletion. The stem cell population in conditional TRF2 null epidermis exhibited shorter telomeres than those in control mice. Squamous cell carcinomas induced in conditional TRF2 null mice developed with increased latency and slower growth due to reduced numbers of proliferating cells as the result of increased apoptosis. TRF2 null epidermal stem cells were found in both primary and metastatic tumors. Despite the low-grade phenotype of the conditional TRF2 null primary tumors, the number of metastatic lesions was similar to control cancers. Basal cells from TRF2 null tumors demonstrated extreme telomere shortening and dramatically increased numbers of telomeric signals by fluorescence in situ hybridization due to increased genomic instability and aneuploidy in these cancers. DNA damage response signals were detected at telomeres in TRF2 null tumor cells from these mice. The increased genomic instability in these tumors correlated with eightfold expansion of the transformed stem cell population compared with that in control cancers. We concluded that genomic instability resulting from loss of TRF2 expression provides biological advantages to the cancer stem cell population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. de Lange T . Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19: 2100–2110.

    Article  CAS  Google Scholar 

  2. van Steensel B, Smogorzewska A, de Lange T . TRF2 protects human telomeres from end to end fusions. Cell 1998; 92: 401–413.

    Article  CAS  Google Scholar 

  3. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T . p53 and ATM dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283: 1321–1324.

    Article  CAS  Google Scholar 

  4. Smogorzewska A, de Lange T . Different telomere damage signaling pathways in human and mouse cells. EMBO J 2002; 21: 4338–4348.

    Article  CAS  Google Scholar 

  5. Denchi EL, de Lange T . Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448: 1068–1071.

    Article  CAS  Google Scholar 

  6. Celli GB, de Lange T . DNA processing is not required for ATM mediated telomere damage response after TRF2 deletion. Nature Cell Biol 2005; 7: 712–718.

    Article  CAS  Google Scholar 

  7. Dimitrova N, Chen YCM, Spector DL, de Lange T . 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 2008; 456: 524–528.

    Article  CAS  Google Scholar 

  8. Deng Y, Guo X, Ferguson DO, Chang S . Multiple roles for MRE11 at uncapped telomeres. Nature 2009; 460: 914–918.

    Article  CAS  Google Scholar 

  9. Attwooll CL, Akpinar M, Petrini JHJ . The Mre11 complex and the response to dysfunctional telomeres. Mol Cell Biol 2009; 29: 5540–5551.

    Article  CAS  Google Scholar 

  10. Dimitrova N, de Lange T . Cell cycle dependent role of MRN at dysfunctional telomeres: ATM signaling dependent induction of nonhomologous end joining (NHEJ) in G1 and resection mediated inhibition of NHEJ in G2. Mol Cell Biol 2009; 29: 5552–5563.

    Article  CAS  Google Scholar 

  11. Wang RC, Smogorzewska A, de Lange T . Homologous recombination generates t loop sized deletions at human telomeres. Cell 2004; 119: 355–368.

    Article  CAS  Google Scholar 

  12. Bailey SM, Cornforth MN, Kurimasa A, Chen DJ, Goodwin EH . Strand specific postreplicative processing of mammalian telomeres. Science 2001; 293: 2462–2465.

    Article  CAS  Google Scholar 

  13. Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, Ricoul M et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 2002; 22: 3474–3487.

    Article  CAS  Google Scholar 

  14. Karlseder J, Smogorzewska A, de Lange T . Senescence induced by altered telomere state, not telomere loss. Science 2002; 295: 2446–2449.

    Article  CAS  Google Scholar 

  15. Rossi DJ, Jamieson CHM, Weissman IL . Stem cells and the pathways to aging and cancer. Cell 2008; 132: 681–696.

    Article  CAS  Google Scholar 

  16. Fuchs E . The tortoise and the hair: slow cycling cells in the stem cell race. Cell 2009; 137: 811–819.

    Article  CAS  Google Scholar 

  17. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA . The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 2008; 22: 654–667.

    Article  CAS  Google Scholar 

  18. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol 2004; 22: 411–417.

    Article  CAS  Google Scholar 

  19. Fuchs E . Scratching the surface of skin development. Nature 2007; 445: 834–842.

    Article  CAS  Google Scholar 

  20. Cotsarelis G . Epithelial stem cells: a folliculocentric view. J Invest Derm 2006; 126: 1459–1468.

    Article  CAS  Google Scholar 

  21. Fuchs E . Skin stem cells: rising to the surface. J Cell Biol 2008; 180: 273–284.

    Article  CAS  Google Scholar 

  22. Flores I, Cayuela ML, Blasco MA . Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005; 309: 1253–1256.

    Article  CAS  Google Scholar 

  23. Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, Wang E et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005; 436: 1048–1052.

    Article  CAS  Google Scholar 

  24. Siegl-Cachedenier I, Flores I, Klatt P, Blasco MA . Telomerase reverses epidermal hair follicle stem cell defects and loss of long term survival associated with critically short telomeres. J Cell Biol 2007; 179: 277–290.

    Article  CAS  Google Scholar 

  25. Munoz P, Blanco R, Blasco MA . Role of TRF2 telomeric protein in cancer and ageing. Cell Cycle 2006; 5: 718–721.

    Article  CAS  Google Scholar 

  26. Blanco R, Munoz P, Flores JM, Klatt P, Blasco MA . Telomerase abrogation dramatically accelerates TRF2 induced epithelial carcinogenesis. Genes Dev 2007; 21: 206–220.

    Article  CAS  Google Scholar 

  27. Stout GJ, Blasco MA . Genetic dissection of the mechanisms underlying telomere associated diseases: impact of the TRF2 telomeric protein on mouse epidermal stem cells. Disease Models Mech 2009; 2: 139–156.

    Article  CAS  Google Scholar 

  28. Matsutani N, Yokozaki H, Tahara E, Tahara H, Kuniyasu H, Haruma K et al. Expression of telomeric repeat binding factor 1 and 2 and TRF1 interacting nuclear protein 2 in human gastric carcinoma. Int J Oncol 2001; 19: 507–512.

    CAS  PubMed  Google Scholar 

  29. Oh BK, Kim YJ, Park C, Park YN . Upregulation of telomere binding proteins TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am J Pathol 2005; 166: 73–80.

    Article  CAS  Google Scholar 

  30. Lantuejoul S, Raynaud C, Salameire D, Gazzeri S, Moro-Sibilot D, Soria JC et al. Telomere maintenance and DNA damage responses during lung carcinogenesis. Clin Cancer Res 2010; 16: 2979–2988.

    Article  CAS  Google Scholar 

  31. Heath J, Langton AK, Hammond NL, Overbeek PA, Dixon MJ, Headon DJ . Hair follicles are required for optimal growth during lateral skin expansion. J Invest Derm 2009; 129: 2358–2364.

    Article  CAS  Google Scholar 

  32. Hockemeyer D, Palm W, Wang RC, Couto SS, de Lange T . Engineered telomere degradation models dyskeratosis congenita. Genes Dev 2008; 22: 1773–1785.

    Article  CAS  Google Scholar 

  33. He H, Wang Y, Guo X, Ramchandani S, Ma J, Shen MF et al. Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita. Mol Cell Biol 2009; 29: 229–240.

    Article  CAS  Google Scholar 

  34. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signaling. Nature 2008; 452: 650–653.

    Article  CAS  Google Scholar 

  35. Ku TK, Nguyen DC, Karaman M, Gill P, Hacia JG, Crowe DL . Loss of p53 expression correlates with metastatic phenotype and transcriptional profile in a new mouse model of head and neck cancer. Mol Cancer Res 2007; 5: 351–362.

    Article  CAS  Google Scholar 

  36. Liu Y, Lyle S, Yang Z, Cotsarelis G . Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Derm 2003; 121: 963–968.

    Article  CAS  Google Scholar 

  37. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al. Defining the epithelial stem cell niche in the skin. Science 2004; 303: 359–363.

    Article  CAS  Google Scholar 

  38. Callicot RJ, Womack JE . Real time PCR assay for measurement of mouse telomeres. Comparative Med 2006; 56: 17–22.

    Google Scholar 

  39. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med 2005; 11: 1351–1354.

    Article  CAS  Google Scholar 

  40. Savage SA, Alter BP . Dyskeratosis congenita. Hematol Oncol Clinics N Am 2009; 23: 215–231.

    Article  Google Scholar 

  41. Trempus CS, Morris RJ, Ehinger M, Elmore A, Bortner CD, Ito M et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 2007; 67: 4173–4181.

    Article  CAS  Google Scholar 

  42. Denchi EL, Celli G, de Lange T . Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev 2006; 20: 2648–2653.

    Article  CAS  Google Scholar 

  43. Capper R, Britt-Compton B, Tankimanova M, Rowson J, Letsolo B, Man S et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev 2007; 21: 2495–2508.

    Article  CAS  Google Scholar 

  44. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L et al. Telomere dysfunction promotes nonreciprocal translocations and epithelial cancers in mice. Nature 2000; 406: 641–645.

    Article  CAS  Google Scholar 

  45. Kusumbe AP, Bapat SA . Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 2009; 69: 9245–9253.

    Article  CAS  Google Scholar 

  46. Liang Y, Zhong Z, Huang Y, Deng W, Cao J, Tsao G et al. Stem like cancer cells are inducible by increasing genomic instability in cancer cells. J Biol Chem 2010; 285: 4931–4940.

    Article  CAS  Google Scholar 

  47. Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 2009; 23: 2060–2075.

    Article  CAS  Google Scholar 

  48. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E . Self renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004; 118: 635–648.

    Article  CAS  Google Scholar 

  49. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH . A single type of progenitor cell maintains normal epidermis. Nature 2007; 446: 185–189.

    Article  CAS  Google Scholar 

  50. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 327: 1385–1389.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institutes of Health Grant No. DE14283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Crowe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojovic, B., Ho, HY., Wu, J. et al. Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice. Oncogene 32, 5156–5166 (2013). https://doi.org/10.1038/onc.2012.555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.555

Keywords

This article is cited by

Search

Quick links