Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Disruption of epithelial architecture caused by loss of PTEN or by oncogenic mutant p110α/PIK3CA but not by HER2 or mutant AKT1

Abstract

Genetic changes in HER2, PTEN, PIK3CA and AKT1 are all common in breast cancer and lead to the elevated phosphorylation of downstream targets of the PI3K/AKT signalling pathway. Changes in HER2, PTEN, PIK3CA and AKT have all been reported to lead to both enhanced proliferation and failures in hollow lumen formation in three dimensional epithelial culture models, but it is not clear whether these failures in lumen formation are caused by any failure in the spatial coordination of lumen formation (hollowing) or purely a failure in the apoptosis and clearance of luminal cells (cavitation). Here, we use normal murine mammary gland (NMuMG) epithelial cells, which form a hollow lumen without significant apoptosis, to compare the transformation by these four genetic changes. We find that either mutant PIK3CA expression or PTEN loss, but not mutant AKT1 E17K, cause disrupted epithelial architecture, whereas HER2 overexpression drives strong proliferation without affecting lumen formation in these cells. We also show that PTEN requires both lipid and protein phosphatase activity, its extreme C-terminal PDZ binding sequence and probably Myosin 5A to control lumen formation through a mechanism that does not correlate with its ability to control AKT, but which is selectively lost through mutation in some tumours. These findings correlate AKT-independent signalling activated by mutant PIK3CA or PTEN loss, but not strongly by HER2, with disrupted epithelial architecture and tumour formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Liu P, Cheng H, Roberts TM, Zhao JJ . Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8: 627–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vanhaesebroeck B, Stephens L, Hawkins P . PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 2012; 13: 195–203.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan TL, Cantley LC . PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27: 5497–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007; 448: 439–444.

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Angulo AM, Stemke-Hale K, Palla SL, Carey M, Agarwal R, Meric-Berstam F et al. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res 2009; 15: 2472–2478.

    Article  CAS  PubMed  Google Scholar 

  6. Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 1999; 155: 1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    Article  CAS  PubMed  Google Scholar 

  8. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 2008; 68: 6084–6091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 2002; 129: 4159–4170.

    CAS  PubMed  Google Scholar 

  10. Liu P, Cheng H, Santiago S, Raeder M, Zhang F, Isabella A et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med 2011; 17: 1116–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer DS, Brinkhaus H, Muller U, Muller M, Cardiff RD, Bentires-Alj M . Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res 2011; 71: 4344–4351.

    Article  CAS  PubMed  Google Scholar 

  12. Dunlap J, Le C, Shukla A, Patterson J, Presnell A, Heinrich MC et al. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res Treat 2010; 120: 409–418.

    Article  CAS  PubMed  Google Scholar 

  13. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    CAS  PubMed  Google Scholar 

  14. Duronio V . The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 2008; 415: 333–344.

    Article  CAS  PubMed  Google Scholar 

  15. Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP . Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 2008; 27: 5464–5476.

    Article  CAS  PubMed  Google Scholar 

  16. Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ . Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res 2009; 69: 5057–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manning BD, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maroulakou IG, Oemler W, Naber SP, Tsichlis PN . Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res 2007; 67: 167–177.

    Article  CAS  PubMed  Google Scholar 

  19. Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R et al. Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 2002; 22: 3842–3851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang Y, Massague J . Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004; 118: 277–279.

    Article  CAS  PubMed  Google Scholar 

  21. McCaffrey LM, Macara IG . Epithelial organization, cell polarity and tumorigenesis. Tr Cell Biol 2011; 21: 727–735.

    Article  CAS  Google Scholar 

  22. Wodarz A, Nathke I . Cell polarity in development and cancer. Nat Cell Biol 2007; 9: 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  23. Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008; 135: 865–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 2007; 128: 383–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 2005; 65: 10992–11000.

    Article  CAS  PubMed  Google Scholar 

  26. Debnath J, Walker SJ, Brugge JS . Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J Cell Biol 2003; 163: 315–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muthuswamy SK, Li D, Lelievre S, Bissell MJ, JS Brugge . ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 2001; 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lauring J, Cosgrove DP, Fontana S, Gustin JP, Konishi H, Abukhdeir AM et al. Knock in of the AKT1 E17K mutation in human breast epithelial cells does not recapitulate oncogenic PIK3CA mutations. Oncogene 2010; 29: 2337–2345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Datta A, Bryant DM, Mostov KE . Molecular regulation of lumen morphogenesis. Curr Biol 2011; 21: R126–R136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu H, Radisky DC, Wang F, Bissell MJ . Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 2004; 164: 603–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pinal N, Goberdhan DC, Collinson L, Fujita Y, Cox IM, Wilson C et al. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol 2006; 16: 140–149.

    Article  CAS  PubMed  Google Scholar 

  32. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS . The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 2002; 111: 29–40.

    Article  CAS  PubMed  Google Scholar 

  33. Lin HH, Yang TP, Jiang ST, Yang HY, Tang MJ . Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation. Kidney Int 1999; 55: 168–178.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Belmonte F, Yu W, Rodriguez-Fraticelli AE, Ewald AJ, Werb Z, Alonso MA et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 2008; 18: 507–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leslie NR, Yang X, Downes CP, Weijer CJ . PtdIns(3,4,5)P3-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol 2007; 17: 115–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng W, Wu H, Chan LN, Zhang M . Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 2008; 283: 23440–23449.

    Article  CAS  PubMed  Google Scholar 

  37. Davidson L, Maccario H, Perera NM, Yang X, Spinelli L, Tibarewal P et al. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN. Oncogene 2010; 29: 687–697.

    Article  CAS  PubMed  Google Scholar 

  38. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 1998; 95: 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tibarewal P, Zilidis G, Spinelli L, Schurch N, Maccario H, Gray A et al. PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumor-suppressing phenotype, but not with AKT activity. Sci Signal 2012; 5: ra18.

    Article  PubMed  Google Scholar 

  40. von Stein W, Ramrath A, Grimm A, Muller-Borg M, Wodarz A . Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 2005; 132: 1675–1686.

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM . PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 2006; 25: 910–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Diepen MT, Parsons M, Downes CP, Leslie NR, Hindges R, Eickholt BJ . MyosinV controls PTEN function and neuronal cell size. Nat Cell Biol 2009; 11: 1191–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knobbe CB, Lapin V, Suzuki A, Mak TW . The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 2008; 27: 5398–5415.

    Article  CAS  PubMed  Google Scholar 

  44. Marsh V, Winton DJ, Williams GT, Dubois N, Trumpp A, Sansom OJ et al. Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nat Genet 2008; 40: 1436–1444.

    Article  CAS  PubMed  Google Scholar 

  45. Kim JW, Kang KH, Burrola P, Mak TW, Lemke G . Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev 2008; 22: 3147–3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han SY, Kato H, Kato S, Suzuki T, Shibata H, Ishii S et al. Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res 2000; 60: 3147–3151.

    CAS  PubMed  Google Scholar 

  47. Leung CT, Brugge JS . Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 2012; 482: 410–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hogan C, Dupre-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE et al. Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 2009; 11: 460–467.

    Article  CAS  PubMed  Google Scholar 

  49. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT . Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 2003; 546: 93–97.

    Article  CAS  PubMed  Google Scholar 

  50. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997; 137: 231–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoker M, Perryman M . An epithelial scatter factor released by embryo fibroblasts. J Cell Sci 1985; 77: 209–223.

    CAS  PubMed  Google Scholar 

  52. Pang H, Flinn R, Patsialou A, Wyckoff J, Roussos ET, Wu H et al. Differential enhancement of breast cancer cell motility and metastasis by helical and kinase domain mutations of class IA phosphoinositide 3-kinase. Cancer Res 2009; 69: 8868–8876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leslie NR, Bennett D, Gray A, Pass I, Hoang-Xuan K, Downes CP . Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J 2001; 357: 427–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jon Backer (Albert Einstein College of Medicine) and Dario Alessi, David Meek, Francis Fuller-Pace, Virginia Appleyard, Alastair Thompson, Emily Davis, John Rouse, Inke Näthke and Paul Crocker (all University of Dundee) for reagents and Peter Downes (University of Dundee) for helpful discussions. We thank Sam Swift, Paul Appleton, Martin Kierans and John James (University of Dundee, CHIPS microscopy facility) for assistance with light and electron microscopy. FB and JCL have been funded by a project grant from the Association for International Cancer Research and NRW is a Wellcome Trust Prize Student. Work in the Inositol Lipid Signalling laboratory is funded by the Medical Research Council, the Association for International Cancer Research and the pharmaceutical companies of the DSTT consortium (Astra Zeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck Serono and Pfizer). We wish to dedicate this work to the memory of Joseph Lim, a valued colleague and friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N R Leslie.

Ethics declarations

Competing interests

Research in the Inositol Lipid Signalling laboratory has been partly funded by the pharmaceutical companies of the DSTT consortium (Astra Zeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck Serono and Pfizer).

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, F., Weerasinghe, N., Davidson, L. et al. Disruption of epithelial architecture caused by loss of PTEN or by oncogenic mutant p110α/PIK3CA but not by HER2 or mutant AKT1. Oncogene 32, 4417–4426 (2013). https://doi.org/10.1038/onc.2012.459

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.459

Keywords

This article is cited by

Search

Quick links