Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunobiology of human mucin 1 in a preclinical ovarian tumor model

Abstract

Epithelial ovarian cancer is an aggressive malignancy, with a low 5-year median survival. Continued improvement on the development of more effective therapies depends in part on the availability of adequate preclinical models for in vivo testing of treatment efficacy. Mucin 1 (MUC1) glycoprotein is a tumor-associated antigen overexpressed in ovarian cancer cells, making it a potential target for immune therapy. To create a preclinical mouse model for MUC1-positive ovarian tumors, we generated triple transgenic (Tg) mice that heterozygously express human MUC1+/− as a transgene, and carry the conditional K-rasG12D oncoallele (loxP-Stop-loxP-K-rasG12D/+) and the floxed Pten gene (Pten/loxP/loxP). Injection of Cre recombinase-encoding adenovirus (AdCre) in the ovarian bursa of triple (MUC1KrasPten) Tg mice triggers ovarian tumors that, in analogy to human ovarian cancer, express strongly elevated MUC1 levels. The tumors metastasize loco-regionally and are accompanied by high serum MUC1, closely mimicking the human disease. Compared with the KrasPten mice with tumors, the MUC1KrasPten mice show increased loco-regional metastasis and augmented accumulation of CD4+Foxp3+ immune-suppressive regulatory T cells. Vaccination of MUC1KrasPten mice with type 1 polarized dendritic cells (DC1) loaded with a MUC1 peptide (DC1–MUC1) can circumvent tumor-mediated immune suppression in the host, activate multiple immune effector genes and effectively prolong survival. Our studies report the first human MUC1-expressing, orthotopic ovarian tumor model, reveal novel MUC1 functions in ovarian cancer biology and demonstrate its suitability as a target for immune-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shan W, Liu J . Epithelial ovarian cancer: focus on genetics and animal models. Cell Cycle 2009; 8: 731–735.

    Article  CAS  PubMed  Google Scholar 

  2. Mullany LK, Fan HY, Liu Z, White LD, Marshall A, Gunaratne P et al. Molecular and functional characteristics of ovarian surface epithelial cells transformed by KrasG12D and loss of Pten in a mouse model in vivo. Oncogene 2011; 30: 3522–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY . Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 2003; 63: 3459–3463.

    CAS  PubMed  Google Scholar 

  4. Boyd J . Mouse models of gynecologic pathology. N Engl J Med 2005; 352: 2240–2242.

    Article  CAS  PubMed  Google Scholar 

  5. Matzuk MM . Gynecologic diseases get their genes. Nat Med 2005; 11: 24–26.

    Article  CAS  PubMed  Google Scholar 

  6. Connolly DC, Bao R, Nikitin AY, Stephens KC, Poole TW, Hua X et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res 2003; 63: 1389–1397.

    CAS  PubMed  Google Scholar 

  7. Yang DH, Fazili Z, Smith ER, Cai KQ, Klein-Szanto A, Cohen C et al. Disabled-2 heterozygous mice are predisposed to endometrial and ovarian tumorigenesis and exhibit sex-biased embryonic lethality in a p53-null background. The Am J Pathol 2006; 169: 258–267.

    Article  CAS  PubMed  Google Scholar 

  8. Tanwar PS, Zhang L, Kaneko-Tarui T, Curley MD, Taketo MM, Rani P et al. Mammalian target of rapamycin is a therapeutic target for murine ovarian endometrioid adenocarcinomas with dysregulated Wnt/beta-Catenin and PTEN. PLoS One 2011; 6: e20715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T . Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005; 11: 63–70.

    Article  CAS  PubMed  Google Scholar 

  10. Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ et al. Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 2009; 69: 6463–6472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 1990; 265: 15286–15293.

    CAS  PubMed  Google Scholar 

  12. Barnd DL, Lan MS, Metzgar RS, Finn OJ . Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci USA 1989; 86: 7159–7163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ioannides CG, Fisk B, Jerome KR, Irimura T, Wharton JT, Finn OJ . Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J Immunol 1993; 151: 3693–3703.

    CAS  PubMed  Google Scholar 

  14. Jerome KR, Domenech N, Finn OJ . Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. J Immunol 1993; 151: 1654–1662.

    CAS  PubMed  Google Scholar 

  15. Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ . Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 1994; 54: 2856–2860.

    CAS  PubMed  Google Scholar 

  16. Ahmad R, Raina D, Joshi MD, Kawano T, Ren J, Kharbanda S et al. MUC1-C oncoprotein functions as a direct activator of the nuclear factor-kappaB p65 transcription factor. Cancer Res 2009; 69: 7013–7021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S et al. MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nature Cell Biol 2007; 9: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Bharti A, Chen D, Gong J, Kufe D . Interaction of glycogen synthase kinase 3beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol 1998; 18: 7216–7224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Kuwahara H, Ren J, Wen G, Kufe D . The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem 2001; 276: 6061–6064.

    Article  CAS  PubMed  Google Scholar 

  20. Wei X, Xu H, Kufe D . Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 2005; 7: 167–178.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto M, Bharti A, Li Y, Kufe D . Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem 1997; 272: 12492–12494.

    Article  CAS  PubMed  Google Scholar 

  22. Besmer DM, Curry JM, Roy LD, Tinder TL, Sahraei M, Schettini J et al. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res 2011; 71: 4432–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rustin GJ, Bast RC, Kelloff GJ, Barrett JC, Carter SK, Nisen PD et al. Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clinical Cancer Res 2004; 10: 3919–3926.

    Article  CAS  Google Scholar 

  24. Karam AK, Karlan BY . Ovarian cancer: the duplicity of CA125 measurement. Nat Rev Clin Oncol 2010; 7: 335–339.

    Article  CAS  PubMed  Google Scholar 

  25. Reinartz S, Failer S, Schuell T, Wagner U . CA125 (MUC16) gene silencing suppresses growth properties of ovarian and breast cancer cells. European J Cancer 2011; 48: 1558–1569.

    Article  Google Scholar 

  26. Theriault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I et al. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol 2011; 121: 434–443.

    Article  CAS  PubMed  Google Scholar 

  27. Brayman M, Thathiah A, Carson DD . MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol: RB&E 2004; 2: 4.

    Article  Google Scholar 

  28. Feng H, Ghazizadeh M, Konishi H, Araki T . Expression of MUC1 and MUC2 mucin gene products in human ovarian carcinomas. Jpn J Clin Oncol 2002; 32: 525–529.

    Article  PubMed  Google Scholar 

  29. Ho SB, Niehans GA, Lyftogt C, Yan PS, Cherwitz DL, Gum ET et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 1993; 53: 641–651.

    CAS  PubMed  Google Scholar 

  30. Lau SK, Weiss LM, Chu PG . Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol 2004; 122: 61–69.

    Article  PubMed  Google Scholar 

  31. Lu KH, Patterson AP, Wang L, Marquez RT, Atkinson EN, Baggerly KA et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res 2004; 10: 3291–3300.

    Article  CAS  PubMed  Google Scholar 

  32. Van Elssen CH, Frings PW, Bot FJ, Van de Vijver KK, Huls MB, Meek B et al. Expression of aberrantly glycosylated Mucin-1 in ovarian cancer. Histopathology 2010; 57: 597–606.

    Article  PubMed  Google Scholar 

  33. Rowse GJ, Tempero RM, VanLith ML, Hollingsworth MA, Gendler SJ . Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res 1998; 58: 315–321.

    CAS  PubMed  Google Scholar 

  34. Budiu RA, Diaconu I, Chrissluis R, Dricu A, Edwards RP, Vlad AM . A conditional mouse model for human MUC1-positive endometriosis shows the presence of anti-MUC1 antibodies and Foxp3+ regulatory T cells. Dis Mod Mech 2009; 2: 593–603.

    Article  CAS  Google Scholar 

  35. Budiu RA, Mantia-Smaldone G, Elishaev E, Chu T, Thaller J, McCabe K et al. Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer. Cancer Immunol Immunother 2011; 60: 975–984.

    Article  CAS  PubMed  Google Scholar 

  36. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 2000; 21: 585–591.

    Article  CAS  PubMed  Google Scholar 

  37. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  38. Kryczek I, Wei S, Zhu G, Myers L, Mottram P, Cheng P et al. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 2007; 67: 8900–8905.

    Article  CAS  PubMed  Google Scholar 

  39. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538–18543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan SO, Vlad AM, Islam K, Gariepy J, Finn OJ . Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice. Biol Chem 2009; 390: 611–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giermasz AS, Urban JA, Nakamura Y, Watchmaker P, Cumberland RL, Gooding W et al. Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol Immunother 2009; 58: 1329–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vlad AM, Muller S, Cudic M, Paulsen H, Otvos L, Hanisch FG et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J Exp Med 2002; 196: 1435–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15: 5323–5337.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spicer AP, Parry G, Patton S, Gendler SJ . Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J Biol Chem 1991; 266: 15099–15109.

    CAS  PubMed  Google Scholar 

  45. Beatty PL, Plevy SE, Sepulveda AR, Finn OJ . Cutting edge: transgenic expression of human MUC1 in IL-10-/- mice accelerates inflammatory bowel disease and progression to colon cancer. J Immunol 2007; 179: 735–739.

    Article  CAS  PubMed  Google Scholar 

  46. Tinder TL, Subramani DB, Basu GD, Bradley JM, Schettini J, Million A et al. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. J Immunol 2008; 181: 3116–3125.

    Article  CAS  PubMed  Google Scholar 

  47. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  48. Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010; 291: 59–66.

    Article  CAS  PubMed  Google Scholar 

  49. Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011; 30: 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  50. Allavena P, Chieppa M, Bianchi G, Solinas G, Fabbri M, Laskarin G et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol 2010; 2010: 547179.

    Article  CAS  PubMed  Google Scholar 

  51. Kandalaft LE, Powell DJ, Singh N, Coukos G . Immunotherapy for ovarian cancer: what's next? J Clin Oncol 2011; 29: 925–933.

    Article  CAS  PubMed  Google Scholar 

  52. Palucka K, Ueno H, Banchereau J . Recent developments in cancer vaccines. J Immunol 2011; 186: 1325–1331.

    Article  CAS  PubMed  Google Scholar 

  53. Odunsi K, Sabbatini P . Harnessing the immune system for ovarian cancer therapy. Am J Reprod Immunol 2008; 59: 62–74.

    Article  CAS  PubMed  Google Scholar 

  54. Chen D, Koido S, Li Y, Gendler S, Gong J . T cell suppression as a mechanism for tolerance to MUC1 antigen in MUC1 transgenic mice. Breast Cancer Res Treat 2000; 60: 107–115.

    Article  CAS  PubMed  Google Scholar 

  55. Wei C, Willis RA, Tilton BR, Looney RJ, Lord EM, Barth RK et al. Tissue-specific expression of the human prostate-specific antigen gene in transgenic mice: implications for tolerance and immunotherapy. Proc Natl Acad Sci USA 1997; 94: 6369–6374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Melief CJ . Cancer immunotherapy by dendritic cells. Immunity 2008; 29: 372–383.

    Article  CAS  PubMed  Google Scholar 

  57. Kurman RJ, Shih Ie M. . Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum Pathol 2011; 42: 918–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vlad AM, Diaconu I, Gantt K . MUC1 in endometriosis and ovarian cancer. Immunol Res 2006; 36: 229–236.

    Article  CAS  PubMed  Google Scholar 

  59. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 2002; 32: 148–149.

    Article  CAS  PubMed  Google Scholar 

  60. Hiltbold EM, Vlad AM, Ciborowski P, Watkins SC, Finn OJ . The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 2000; 165: 3730–3741.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Daniela Dinulescu for discussion on various aspects of the mouse model, Dr Olivera Finn for critical review of the paper and Julia Thaller for technical assistance with histology work. This study was supported by the Department of Defense Ovarian Cancer Academy Award, Pennsylvania Department of Health, Scaife Foundation and NIH/NCI 1 R01 CA163462-01 (to AMV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Vlad.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budiu, R., Elishaev, E., Brozick, J. et al. Immunobiology of human mucin 1 in a preclinical ovarian tumor model. Oncogene 32, 3664–3675 (2013). https://doi.org/10.1038/onc.2012.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.397

Keywords

This article is cited by

Search

Quick links