Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epigenetic cancer therapy: rationales, targets and drugs

Abstract

The fundamental role of altered epigenetic modification patterns in tumorigenesis establishes epigenetic regulatory enzymes as important targets for cancer therapy. Over the past few years, several drugs with an epigenetic activity have received approval for the treatment of cancer patients, which has led to a detailed characterization of their modes of action. The results showed that both established drug classes, the histone deacetylase (HDAC) inhibitors and the DNA methyltransferase inhibitors, show substantial limitations in their epigenetic specificity. HDAC inhibitors are highly specific drugs, but the enzymes have a broad substrate specificity and deacetylate numerous proteins that are not associated with epigenetic regulation. Similarly, the induction of global DNA demethylation by non-specific inhibition of DNA methyltransferases shows pleiotropic effects on epigenetic regulation with no apparent tumor-specificity. Second-generation azanucleoside drugs have integrated the knowledge about the cellular uptake and metabolization pathways, but do not show any increased specificity for cancer epigenotypes. As such, the traditional rationale of epigenetic cancer therapy appears to be in need of refinement, as we move from the global inhibition of epigenetic modifications toward the identification and targeting of tumor-specific epigenetic programs. Recent studies have identified epigenetic mechanisms that promote self-renewal and developmental plasticity in cancer cells. Druggable somatic mutations in the corresponding epigenetic regulators are beginning to be identified and should facilitate the development of epigenetic therapy approaches with improved tumor specificity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aiden AP, Rivera MN, Rheinbay E, Ku M, Coffman EJ, Truong TT et al. (2010). Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. Cell Stem Cell 6: 591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. (2011). MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20: 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatla D, Gerbing RB, Alonzo TA, Conner H, Ross JA, Meshinchi S et al. (2009). Cytidine deaminase genotype and toxicity of cytosine arabinoside therapy in children with acute myeloid leukemia. Br J Haematol 144: 388–394.

    Article  CAS  PubMed  Google Scholar 

  • Bocker MT, Hellwig M, Breiling A, Eckstein V, Ho AD, Lyko F . (2011). Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117: e182–e189.

    Article  CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  • Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M et al. (2009). DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41: 1207–1215.

    Article  PubMed  Google Scholar 

  • Brueckner B, Rius M, Rivera Markelova M, Fichtner I, Hals PA, Sandvold ML et al. (2010). Delivery of azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther 9: 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Byun HM, Kwan JM, Issa JP, Yang AS . (2007). Hydroxycarbamide in combination with azacitidine or decitabine is antagonistic on DNA methylation inhibition. Br J Haematol 138: 616–623.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834–840.

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ et al. (2010). S110, a 5-aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9: 1443–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS et al. (2005). Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 4: 1515–1520.

    Article  CAS  PubMed  Google Scholar 

  • Cole SP, Deeley RG . (2006). Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27: 438–446.

    Article  CAS  PubMed  Google Scholar 

  • Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. (2011). Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20: 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damaraju VL, Sawyer MB, Mackey JR, Young JD, Cass CE . (2009). Human nucleoside transporters: biomarkers for response to nucleoside drugs. Nucleosides Nucleotides Nucleic Acids 28: 450–463.

    Article  CAS  PubMed  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R . (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455.

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA . (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M . (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. (2010). Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M . (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi SH et al. (2009). Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114: 2764–2773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flasshove M, Strumberg D, Ayscue L, Mitchell BS, Tirier C, Heit W et al. (1994). Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside. Leukemia 8: 780–785.

    CAS  PubMed  Google Scholar 

  • Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F et al. (2009). Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 15: 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492.

    Article  CAS  PubMed  Google Scholar 

  • Hagemann S, Heil O, Lyko F, Brueckner B . (2011). Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One 6: e17388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG et al. (2011). Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43: 768–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N et al. (2010). A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 5: e9001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A . (2008). Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27: 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z et al. (2004). Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 64: 4294–4301.

    Article  CAS  PubMed  Google Scholar 

  • Huber-Ruano I, Pastor-Anglada M . (2009). Transport of nucleoside analogs across the plasma membrane: a clue to understanding drug-induced cytotoxicity. Curr Drug Metab 10: 347–358.

    Article  CAS  PubMed  Google Scholar 

  • Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S et al. (2005). Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23: 3948–3956.

    Article  CAS  PubMed  Google Scholar 

  • Issa JP, Kantarjian HM . (2009). Targeting DNA methylation. Clin Cancer Res 15: 3938–3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333: 1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P et al. (2010). Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467: 338–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Baylin SB . (2007). The epigenomics of cancer. Cell 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Taylor SM . (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell 20: 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al. (2006). Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106: 1794–1803.

    Article  CAS  PubMed  Google Scholar 

  • Kroep JR, Loves WJ, van der Wilt CL, Alvarez E, Talianidis I, Boven E et al. (2002). Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther 1: 371–376.

    CAS  PubMed  Google Scholar 

  • Kuck D, Singh N, Lyko F, Medina-Franco JL . (2010). Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18: 822–829.

    Article  CAS  PubMed  Google Scholar 

  • Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E et al. (1995). Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Leonard GD, Fojo T, Bates SE . (2003). The role of ABC transporters in clinical practice. Oncologist 8: 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Olin EJ, Buskirk HH, Reineke LM . (1970). Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res 30: 2760–2769.

    CAS  PubMed  Google Scholar 

  • Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S et al. (2007). Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 21: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizardi PM . (2010). As we bring demethylating drugs to the clinic, we better know the DICE being cast. Oncogene 29: 5772–5774.

    Article  CAS  PubMed  Google Scholar 

  • Maring JG, Wachters FM, Slijfer M, Maurer JM, Boezen HM, Uges DR et al. (2010). Pharmacokinetics of gemcitabine in non-small-cell lung cancer patients: impact of the 79A>C cytidine deaminase polymorphism. Eur J Clin Pharmacol 66: 611–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Franco JL, Lopez-Vallejo F, Kuck D, Lyko F . (2011). Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15: 293–304.

    Article  CAS  PubMed  Google Scholar 

  • Mohn F, Schubeler D . (2009). Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25: 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. (2010). Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mund C, Hackanson B, Stresemann C, Lubbert M, Lyko F . (2005). Characterization of DNA demethylation effects induced by 5-aza-2′-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res 65: 7086–7090.

    Article  CAS  PubMed  Google Scholar 

  • Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al. (2010). Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42: 665–667.

    Article  CAS  PubMed  Google Scholar 

  • Ohm JE, Baylin SB . (2007). Stem cell chromatin patterns: an instructive mechanism for DNA hypermethylation? Cell Cycle 6: 1040–1043.

    Article  CAS  PubMed  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39: 237–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S et al. (2007). Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25: 3109–3115.

    Article  CAS  PubMed  Google Scholar 

  • Parmar S, Seeringer A, Denich D, Gartner F, Pitterle K, Syrovets T et al. (2011). Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. Pharmacogenomics 12: 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Anglada M, Cano-Soldado P, Molina-Arcas M, Lostao MP, Larrayoz I, Martinez-Picado J et al. (2005). Cell entry and export of nucleoside analogues. Virus Res 107: 151–164.

    Article  CAS  PubMed  Google Scholar 

  • Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH et al. (2009). Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27: 5410–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin T, Jelinek J, Si J, Shu J, Issa JP . (2009). Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 113: 659–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rius M, Keller D, Brom M, Hummel-Eisenbeiss J, Lyko F, Keppler D . (2010). Vectorial transport of nucleoside analogs from the apical to the basolateral membrane in double-transfected cells expressing the human concentrative nucleoside transporter hCNT3 and the export pump ABCC4. Drug Metab Dispos 38: 1054–1063.

    Article  CAS  PubMed  Google Scholar 

  • Rius M, Stresemann C, Keller D, Brom M, Schirrmacher E, Keppler D et al. (2009). Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol Cancer Ther 8: 225–231.

    Article  CAS  PubMed  Google Scholar 

  • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R et al. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471: 74–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39: 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X et al. (2008). EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32: 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. (2002). Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20: 2429–2440.

    Article  CAS  PubMed  Google Scholar 

  • Simon JA, Lange CA . (2008). Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647: 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Sims III RJ, Reinberg D . (2008). Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9: 815–820.

    Article  CAS  PubMed  Google Scholar 

  • Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al. (2010). Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 107: 20980–20985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano AO, Yang H, Faderl S, Estrov Z, Giles F, Ravandi F et al. (2007). Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110: 2302–2308.

    Article  CAS  PubMed  Google Scholar 

  • Stegmann AP, Honders MW, Willemze R, Landegent JE . (1995). De novo induced mutations in the deoxycytidine kinase (dck) gene in rat leukemic clonal cell lines confer resistance to cytarabine (AraC) and 5-aza-2′-deoxycytidine (DAC). Leukemia 9: 1032–1038.

    CAS  PubMed  Google Scholar 

  • Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F . (2006). Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66: 2794–2800.

    Article  CAS  PubMed  Google Scholar 

  • Stresemann C, Lyko F . (2008). Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123: 8–13.

    Article  CAS  PubMed  Google Scholar 

  • Van Rompay AR, Norda A, Linden K, Johansson M, Karlsson A . (2001). Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol Pharmacol 59: 1181–1186.

    Article  CAS  PubMed  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Kimhi S, Howard G, Eden A, Lyko F . (2010). Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29: 5775–5784.

    Article  CAS  PubMed  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J et al. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473: 343–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD et al. (2010). Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6: e1000917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, D′Alessio AC, Ito S, Xia K, Wang Z, Cui K et al. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473: 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA . (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541–5552.

    Article  CAS  PubMed  Google Scholar 

  • Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C et al. (2007). Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67: 6400–6408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bodo Brückner for critically reading the manuscript. This work is supported by grants from the Deutsche Forschungsgemeinschaft (RI 2121/1-1) and Deutsche Krebshilfe (grant number 109773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Lyko.

Ethics declarations

Competing interests

Maria Rius declares no conflict of interest. Frank Lyko received a commercial research grant from Clavis Pharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rius, M., Lyko, F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31, 4257–4265 (2012). https://doi.org/10.1038/onc.2011.601

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.601

Keywords

This article is cited by

Search

Quick links