Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells

Abstract

One of the characteristics of gliomas is a decrease in the expression of connexin43, a protein that forms gap junctions. Restoring connexin43 expression in glioma cells reduces their exacerbated rate of cell growth, although it is not yet known how connexin43 modifies the expression of genes involved in cell proliferation. Here, we show that restoring connexin43 to C6 glioma cells impedes their progression from G0/G1 to the S phase of the cell cycle by reducing retinoblastoma phosphorylation and cyclin E expression through the upregulation of p21 and p27. Interestingly, connexin43 diminishes the oncogenic activity of c-Src exhibited by glioma cells. By studying a Tyr247 and Tyr265 mutant connexin43, we show that these residues are required for connexin43 to inhibit c-Src activity and cell proliferation. In conclusion, by acting as a substrate of c-Src, connexin43 reduces its oncogenic activity and decreases the rate of glioma cell proliferation, potentially an early step in the antiproliferative effects of connexin43. Although c-Src is known to phosphorylate connexin43, this study provides the first evidence that connexin43 can also inhibit c-Src activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bates DC, Sin WC, Aftab Q, Naus CC . (2007). Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55: 1554–1564.

    Article  Google Scholar 

  • Bennett MV, Contreras JE, Bukauskas FF, Saez JC . (2003). New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26: 610–617.

    Article  CAS  Google Scholar 

  • Campbell EJ, McDuff E, Tatarov O, Tovey S, Brunton V, Cooke TG et al. (2008). Phosphorylated c-Src in the nucleus is associated with improved patient outcome in ER-positive breast cancer. Br J Cancer 99: 1769–1774.

    Article  CAS  Google Scholar 

  • Cavalla P, Dutto A, Piva R, Richiardi P, Grosso R, Schiffer D . (1998). Cyclin D1 expression in gliomas. Acta Neuropathol 95: 131–135.

    Article  CAS  Google Scholar 

  • Cina C, Maass K, Theis M, Willecke K, Bechberger JF, Naus CC . (2009). Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. J Neurosci 29: 2009–2021.

    Article  CAS  Google Scholar 

  • Cooper JA, Gould KL, Cartwright CA, Hunter T . (1986). Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231: 1431–1434.

    Article  CAS  Google Scholar 

  • Chakrabarty A, Bridges LR, Gray S . (1996). Cyclin D1 in astrocytic tumours: an immunohistochemical study. Neuropathol Appl Neurobiol 22: 311–316.

    Article  CAS  Google Scholar 

  • Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S et al. (2007). p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128: 281–294.

    Article  CAS  Google Scholar 

  • Dang X, Doble BW, Kardami E . (2003). The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242: 35–38.

    Article  CAS  Google Scholar 

  • David-Pfeuty T, Bagrodia S, Shalloway D . (1993). Differential localization patterns of myristoylated and nonmyristoylated c-Src proteins in interphase and mitotic c-Src overexpresser cells. J Cell Sci 105: 613–628.

    CAS  PubMed  Google Scholar 

  • Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R et al. (2009). Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol 27: 77–83.

    Article  CAS  Google Scholar 

  • El-Fouly MH, Trosko JE, Chang C-C . (1987). A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168: 422–430.

    Article  CAS  Google Scholar 

  • Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC . (2004). CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279: 36943–36950.

    Article  CAS  Google Scholar 

  • Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gifford A et al. (1996). Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12: 1173–1180.

    CAS  Google Scholar 

  • Giepmans BN . (2006). Role of connexin43-interacting proteins at gap junctions. Adv Cardiol 42: 41–56.

    Article  CAS  Google Scholar 

  • Giepmans BN, Hengeveld T, Postma FR, a Moolenaar WH . (2001). Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication. J Biol Chem 276: 8544–8549.

    Article  CAS  Google Scholar 

  • Gilleron J, Fiorini C, Carette D, Avondet C, Falk MM, Segretain D et al. (2008). Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 121: 4069–4078.

    Article  CAS  Google Scholar 

  • Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB et al. (2007). Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128: 269–280.

    Article  CAS  Google Scholar 

  • Herrero-Gonzalez S, Valle-Casuso JC, Sanchez-Alvarez R, Giaume C, Medina JM, Tabernero A . (2009). Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia 57: 222–233.

    Article  Google Scholar 

  • Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS . (2007). Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94: 29–65.

    Article  CAS  Google Scholar 

  • Huang R-P, Hossain M, Sehgal A, Boynton A . (1999). Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70: 21–24.

    Article  CAS  Google Scholar 

  • Huang R, Fan Y, Hossain M, Peng A, Zeng Z, Boynton A . (1998). Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 58: 5089–5096.

    CAS  PubMed  Google Scholar 

  • Kanemitsu MY, Jiang W, Eckhart W . (1998). Cdc2-mediated phosphorylation of the gap junction protein, connexin43, during mitosis. Cell Growth Differ 9: 13–21.

    CAS  PubMed  Google Scholar 

  • Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W et al. (2007). The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol 94: 245–264.

    Article  CAS  Google Scholar 

  • Kmiecik TE, Shalloway D . (1987). Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49: 65–73.

    Article  CAS  Google Scholar 

  • Koffler L, Roshong S, Kyu Park I, Cesen-Cummings K, Thompson DC, Dwyer-Nield LD et al. (2000). Growth inhibition in G(1) and altered expression of cyclin D1 and p27(kip-1 )after forced connexin expression in lung and liver carcinoma cells. J Cell Biochem 79: 347–354.

    Article  CAS  Google Scholar 

  • Krutovskikh VA, Troyanovsky SM, Piccoli C, Tsuda H, Asamoto M, Yamasaki H . (2000). Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19: 505–513.

    Article  CAS  Google Scholar 

  • Lai CP, Bechberger JF, Naus CC . (2009). Pannexin2 as a novel growth regulator in C6 glioma cells. Oncogene 28: 4402–4408.

    Article  CAS  Google Scholar 

  • Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC . (2007). Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67: 1545–1554.

    Article  CAS  Google Scholar 

  • Lampe PD, Lau AF . (2004). The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36: 1171–1186.

    Article  CAS  Google Scholar 

  • Li W, Hertzberg EL, Spray DC . (2005). Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J Biol Chem 280: 7941–7948.

    Article  CAS  Google Scholar 

  • Lin R, Martyn KD, Guyette CV, Lau AF, Warn-Cramer BJ . (2006). v-Src tyrosine phosphorylation of connexin43: regulation of gap junction communication and effects on cell transformation. Cell Commun Adhes 13: 199–216.

    Article  CAS  Google Scholar 

  • Lin R, Warn-Cramer BJ, Kurata WE, Lau AF . (2001). v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J Cell Biol 154: 815–827.

    Article  CAS  Google Scholar 

  • Loewenstein WR, Kanno Y . (1966). Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209: 1248–1249.

    Article  CAS  Google Scholar 

  • Naus CC . (2002). Gap junctions and tumour progression. Can J Physiol Pharmacol 80: 136–141.

    Article  CAS  Google Scholar 

  • Naus CC, Bechberger JF, Zhang Y, Venance L, Yamasaki H, Juneja SC et al. (1997). Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin 43. J Neurosci Res 49: 528–540.

    Article  CAS  Google Scholar 

  • Ohtani K, DeGregori J, Nevins JR . (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92: 12146–12150.

    Article  CAS  Google Scholar 

  • Pahujaa M, Anikin M, Goldberg GS . (2007). Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Exp Cell Res 313: 4083–4090.

    Article  CAS  Google Scholar 

  • Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ et al. (2007). Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120: 3772–3783.

    Article  CAS  Google Scholar 

  • Prochnow N, Dermietzel R . (2008). Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130: 71–77.

    Article  CAS  Google Scholar 

  • Pu P, Xia Z, Yu S, Huang Q . (2004). Altered expression of Cx43 in astrocytic tumors. Clin Neurol Neurosurg 107: 49–54.

    Article  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C . (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322: 1551–1555.

    Article  CAS  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  Google Scholar 

  • Shinoura N, Chen L, Wani MA, Kim YG, Larson JJ, Warnick RE et al. (1996). Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy. J Neurosurg 84: 839–845.

    Article  CAS  Google Scholar 

  • Sin WC, Bechberger JF, Rushlow WJ, Naus CC . (2008). Dose-dependent differential upregulation of CCN1/Cyr61 and CCN3/NOV by the gap junction protein Connexin43 in glioma cells. J Cell Biochem 103: 1772–1782.

    Article  CAS  Google Scholar 

  • Solan JL, Lampe PD . (2009). Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419: 261–272.

    Article  CAS  Google Scholar 

  • Soroceanu L, Manning T, Sontheimer H . (2001). Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33: 107–117.

    Article  CAS  Google Scholar 

  • Suadicani SO, Iglesias R, Spray DC, Scemes E . (2009). Point mutation in the mouse P2X7 receptor affects intercellular calcium waves in astrocytes. ASN Neuro 1: 55–63.

    Article  CAS  Google Scholar 

  • Swenson KI, Piwnica-Worms H, McNamee H, Paul DL . (1990). Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v-src-induced inhibition of communication. Cell Regul 1: 989–1002.

    Article  CAS  Google Scholar 

  • Tabernero A, Giaume C, Medina JM . (1996). Endothelin-1 regulates glucose utilization in cultured rat astrocytes by controlling intercellular communication through gap junctions. Glia 16: 187–195.

    Article  CAS  Google Scholar 

  • Tabernero A, Sanchez-Alvarez R, Medina JM . (2006). Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes. J Neurochem 96: 973–982.

    Article  CAS  Google Scholar 

  • Thomas SM, Brugge JS . (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13: 513–609.

    Article  CAS  Google Scholar 

  • Warn-Cramer BJ, Lin R, Martyn K, Guyette CV, Lau AF . (2003). Maintaining connexin43 gap junctional communication in v-Src cells does not alter growth properties associated with the transformed phenotype. Cell Commun Adhes 10: 299–303.

    Article  CAS  Google Scholar 

  • Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A . (1997). Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14: 2005–2013.

    Article  CAS  Google Scholar 

  • Xu W, Harrison SC, Eck MJ . (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385: 595–602.

    Article  CAS  Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y . (1999). Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci III 322: 151–159.

    Article  CAS  Google Scholar 

  • Zhang X, Zhao M, Huang AY, Fei Z, Zhang W, Wang XL . (2005). The effect of cyclin D expression on cell proliferation in human gliomas. J Clin Neurosci 12: 166–168.

    Article  CAS  Google Scholar 

  • Zhang YW, Morita I, Ikeda M, Ma KW, Murota S . (2001). Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27. Oncogene 20: 4138–4149.

    Article  CAS  Google Scholar 

  • Zhang YW, Nakayama K, Morita I . (2003). A novel route for connexin 43 to inhibit cell proliferation: negative regulation of S-phase kinase-associated protein (Skp 2). Cancer Res 63: 1623–1630.

    CAS  PubMed  Google Scholar 

  • Zhu D, Caveney S, Kidder GM, Naus CCG . (1991). Transfection of C6 glioma-cells with connexin-43 cDNA—analysis of expression, intercellular coupling, and cell-proliferation. Proc Natl Acad Sci USA 88: 1883–1887.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Educación y Ciencia, FEDER SAF2007-64161, the Junta de Castilla y León SA043A09. S Herrero-González and E Gangoso were recipient of a fellowship from the Ministerio de Educación y Ciencia. We are grateful for the technical assistance of T del Rey and we thank M Sefton for help in preparing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tabernero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero-González, S., Gangoso, E., Giaume, C. et al. Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene 29, 5712–5723 (2010). https://doi.org/10.1038/onc.2010.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.299

Keywords

This article is cited by

Search

Quick links