Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma

Abstract

The oncogenic PIM1 kinase has been implicated as a cofactor for c-MYC in prostate carcinogenesis. In this study, we show that in human prostate tumors, coexpression of c-MYC and PIM1 is associated with higher Gleason grades. Using a tissue recombination model coupled with lentiviral-mediated gene transfer we find that Pim1 is weakly oncogenic in naive adult mouse prostatic epithelium. However, it cooperates dramatically with c-MYC to induce prostate cancer within 6-weeks. Importantly, c-MYC/Pim1 synergy is critically dependent on Pim1 kinase activity. c-MYC/Pim1 tumors showed increased levels of the active serine-62 (S62) phosphorylated form of c-MYC. Grafts expressing a phosphomimetic c-MYCS62D mutant had higher rates of proliferation than grafts expressing wild type c-MYC but did not form tumors like c-MYC/Pim1 grafts, indicating that Pim1 cooperativity with c-MYC in vivo involves additional mechanisms other than enhancement of c-MYC activity by S62 phosphorylation. c-MYC/Pim1-induced prostate carcinomas show evidence of neuroendocrine (NE) differentiation. Additional studies, including the identification of tumor cells coexpressing androgen receptor and NE cell markers synaptophysin and Ascl1 suggested that NE tumors arose from adenocarcinoma cells through transdifferentiation. These results directly show functional cooperativity between c-MYC and PIM1 in prostate tumorigenesis in vivo and support efforts for targeting PIM1 in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7
Figure 6

Similar content being viewed by others

References

  • Abdulkadir SA, Carbone JM, Naughton CK, Humphrey PA, Catalona WJ, Milbrandt J . (2001a). Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma. Hum Pathol 32: 935–939.

    Article  CAS  PubMed  Google Scholar 

  • Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol 22: 1495–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J et al. (2001b). Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7: 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann M, Hennemann H, Xing PX, Hoffmann I, Moroy T . (2004). The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem 279: 48319–48328.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T . (2006). The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol 38: 430–443.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann M, Moroy T . (2005). The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37: 726–730.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya N, Wang Z, Davitt C, McKenzie IF, Xing PX, Magnuson NS . (2002). Pim-1 associates with protein complexes necessary for mitosis. Chromosoma 111: 80–95.

    Article  CAS  PubMed  Google Scholar 

  • Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . (2005). Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 3: 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Cindolo L, Cantile M, Vacherot F, Terry S, de la Taille A . (2007). Neuroendocrine differentiation in prostate cancer: from lab to bedside. Urol Int 79: 287–296.

    Article  PubMed  Google Scholar 

  • Cunha GR, Lung B . (1978). The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205: 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Deeble PD, Murphy DJ, Parsons SJ, Cox ME . (2001). Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol 21: 8471–8482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826.

    Article  CAS  PubMed  Google Scholar 

  • di Sant′Agnese PA, de Mesy Jensen KL . (1987). Neuroendocrine differentiation in prostatic carcinoma. Hum Pathol 18: 849–856.

    Article  PubMed  Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  • Garabedian EM, Humphrey PA, Gordon JI . (1998). A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci USA 95: 15382–15387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel DE, Nakayama M, Luo J, Abukhdeir AM, Park BH, Bieberich CJ et al. (2009). Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small cell neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate 69: 603–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward SW, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R et al. (1998). Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation 63: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wang T, Stormo GD, Gordon JI . (2004). RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proc Natl Acad Sci USA 101: 5559–5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan-Lefko PJ, Chen TM, Ittmann MM, Barrios RJ, Ayala GE, Huss WJ et al. (2003). Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 55: 219–237.

    Article  PubMed  Google Scholar 

  • Kim J, Adam RM, Freeman MR . (2002). Activation of the Erk mitogen-activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation. Cancer Res 62: 1549–1554.

    CAS  PubMed  Google Scholar 

  • Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA . (2009). Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet 5: e1000542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ . (2006). Expression and role of Foxa proteins in prostate cancer. Prostate 66: 1013–1028.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y . (1999). Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 274: 18659–18666.

    Article  CAS  PubMed  Google Scholar 

  • Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N . (2008). Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 68: 5076–5085.

    Article  CAS  PubMed  Google Scholar 

  • Pinski J, Wang Q, Quek ML, Cole A, Cooc J, Danenberg K et al. (2006). Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate 66: 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  • Roh M, Franco OE, Hayward SW, van der Meer R, Abdulkadir SA . (2008). A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells. PLoS ONE 3: e2572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roh M, Gary B, Song C, Said-Al-Naief N, Tousson A, Kraft A et al. (2003). Overexpression of the oncogenic kinase Pim-1 leads to genomic instability. Cancer Res 63: 8079–8084.

    CAS  PubMed  Google Scholar 

  • Roh M, Song C, Kim J, Abdulkadir SA . (2005). Chromosomal instability induced by Pim-1 is passage-dependent and associated with dysregulation of cyclin B1. J Biol Chem 280: 40568–40577.

    Article  CAS  PubMed  Google Scholar 

  • Saris CJ, Domen J, Berns A . (1991). The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 10: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer CG, Roemer A, Grobholz R . (2006). Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate 66: 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Karsunky H, Rodel B, Zevnik B, Elsasser HP, Moroy T . (1998). Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-selection. EMBO J 17: 5349–5359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA et al. (2004). Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64: 2270–2305.

    Article  CAS  PubMed  Google Scholar 

  • Valdman A, Fang X, Pang ST, Ekman P, Egevad L . (2004). Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer. Prostate 60: 367–371.

    Article  CAS  PubMed  Google Scholar 

  • van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. (1989). Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Vias M, Massie CE, East P, Scott H, Warren A, Zhou Z et al. (2008). Pro-neural transcription factors as cancer markers. BMC Med Genomics 1: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wafa LA, Palmer J, Fazli L, Hurtado-Coll A, Bell RH, Nelson CC et al. (2007). Comprehensive expression analysis of L-dopa decarboxylase and established neuroendocrine markers in neoadjuvant hormone-treated versus varying Gleason grade prostate tumors. Hum Pathol 38: 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS . (2002). Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 1593: 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Ide H, Kim Y, Dubey P, Witte ON . (2003). in vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 100 (Suppl 1): 11896–11903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Yuan TC, Veeramani S, Lin MF . (2007). Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 14: 531–547.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Kondrikov D, Yuan TC, Lin FF, Hansen J, Lin MF . (2003). Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 22: 6704–6716.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Z, Li X, Magnuson NS . (2008). Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27: 4809–4819.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al. (2006). Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66: 7889–7898.

    Article  CAS  PubMed  Google Scholar 

  • Zippo A, De Robertis A, Serafini R, Oliviero S . (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9: 932–944.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Robert Matusik, Vito Quaranta, Fritz Parl and Susan Kasper for helpful discussions. This work was supported by NIH Grant CA123484 (SAA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Abdulkadir.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Kim, J., Roh, M. et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 29, 2477–2487 (2010). https://doi.org/10.1038/onc.2010.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.10

Keywords

This article is cited by

Search

Quick links